

Weak MPCEP and *CEPMP inverses

Dijana Mosić

Abstract

We generalize the systems of equations, which introduced the MPCEP and *CEPMP inverses, using a minimal rank weak Drazin inverse and a minimal rank right weak Drazin inverse. In order to solve new generalized systems of matrix equations, we define new types of generalized inverses, the so-called weak MPCEP and *CEPMP inverses. The DMP, MPD, MPCEP and *CEPMP inverses are particular kinds of weak MPCEP and *CEPMP inverses. We show characterizations and formulae for weak MPCEP and *CEPMP inverses as well as their perturbation results. As application of weak MPCEP and *CEPMP inverses, we prove solvability of certain linear equations and recover the main application of the Moore–Penrose inverse.

1 Introduction

Let $\mathbb{C}^{m \times n}$ be the set of $m \times n$ complex matrices. Denote by $\mathcal{N}(A)$, $\mathcal{R}(A)$, $\text{rank}(A)$ and A^* , respectively, the null space, range, rank and conjugate transpose of $A \in \mathbb{C}^{m \times n}$.

Solving systems of matrix equations, various kinds of generalized inverses are defined. The principal application of generalized inverses is in solving linear systems, where they are used in much the same way as ordinary inverses in the nonsingular case.

Key Words: Minimal rank weak Drazin inverse, MPCEP inverse, *CEPMP inverse, core-EP inverse.

2010 Mathematics Subject Classification: Primary 15A24, 15A09; Secondary 15A10, 15A21, 65F05.

Received: 20.02.2025

Accepted: 14.06.2025

The Moore-Penrose inverse of $A \in \mathbb{C}^{m \times n}$ is unique $X = A^\dagger \in \mathbb{C}^{n \times m}$ satisfying $AXA = A$, $XAX = X$, $(AX)^* = AX$ and $(XA)^* = XA$ [2]. If only $XAX = X$ (or $AXA = A$) holds, then X is an outer (or inner) inverse of A . For subspaces T of \mathbb{C}^n and S of \mathbb{C}^m with dimensions $s \leq \text{rank}(A)$ and $m - s$, respectively, in the case that $XAX = X$, $\mathcal{R}(X) = T$ and $\mathcal{N}(X) = S$, $X = A_{T,S}^{(2)}$ is unique (if it exists) [2].

The Drazin inverse of $A \in \mathbb{C}^{n \times n}$ with the index $k = \text{ind}(A)$ is unique $X = A^D \in \mathbb{C}^{n \times n}$ such that $A^{k+1}X = A^k$, $XAX = X$ and $AX = XA$ [2]. If $\text{ind}(A) = 1$, $A^\# = A^D$ is the group inverse of A . The core-EP inverse of $A \in \mathbb{C}^{n \times n}$ is unique $X = A^\oplus \in \mathbb{C}^{n \times n}$ satisfying $XAX = X$ and $\mathcal{R}(X) = \mathcal{R}(X^*) = \mathcal{R}(A^k)$, where $k = \text{ind}(A)$ [16]. Notice that $A^\oplus = A^D A^k (A^k)^\dagger$ [6]. As a dual core-EP, the *core-EP inverse of A is expressed by $A_\oplus = (A^k)^\dagger A^k A^D$ [24]. When $\text{ind}(A) = 1$, $A^\oplus = A^\oplus$ is the core inverse of A and $A_\oplus = A_\oplus$ is the dual core inverse of A [1].

Combining in adequate manners the above mentioned generalized inverses, some known generalized inverses can be represented:

- the DMP inverse $A^{D,\dagger} = A^D A A^\dagger$ [10],
- the MPD inverse $A^{\dagger,D} = A^\dagger A A^D$ [10],
- the CMP inverse $A^{c,\dagger} = A^\dagger A A^D A A^\dagger$ [11],
- the weak group inverse $A^\circledast = (A^\oplus)^2 A$ [20],
- the m -weak group inverse $A^{\circledast_m} = (A^\oplus)^{m+1} A^m$, where $m \in \mathbb{N}$ [25].

As a compose of the Moore-Penrose inverse and core-EP inverse, the MP-CEP inverse was defined in [4] for bounded linear Hilbert space operators. The MPCEP inverse of $A \in \mathbb{C}^{n \times n}$ is uniquely determined solution to the system

$$XAX = X, \quad XA = A^\dagger A A^\oplus A \quad \text{and} \quad AX = A A^\oplus, \quad (1)$$

which can be expressed as

$$A^{\dagger,\oplus} = A^\dagger A A^\oplus.$$

The *CEPMP inverse of A is unique solution to

$$XAX = X, \quad AX = A A_\oplus A A^\dagger \quad \text{and} \quad XA = A_\oplus A, \quad (2)$$

and it is given by

$$A_{\oplus,\dagger} = A_\oplus A A^\dagger.$$

Interesting properties of the MPCEP inverse for complex matrices can be found in [15]. The definition of the MPCEP inverse was generalized to

operators between two Hilbert spaces in [18] and to quaternion matrices in [7, 8, 9]. New extensions of the MPCEP inverse were proposed in [22, 23].

As an extension of the Drazin inverse, a weak Drazin inverse of $A \in \mathbb{C}^{n \times n}$ with $k = \text{ind}(A)$, was presented in [3] as a solution $X \in \mathbb{C}^{n \times n}$ of the equation $XA^{k+1} = A^k$. Remark that the weak Drazin inverse is not uniquely determined, but it is easier to calculate weak Drazin inverse than Drazin inverse and applied it instead of Drazin inverse in the theory of differential equations, Markov chains and so on. A minimal rank weak Drazin inverse X of A [3] satisfies

$$XA^{k+1} = A^k \quad \text{and} \quad \text{rank}(X) = \text{rank}(A^D).$$

The Drazin inverse A^D is unique minimal rank weak Drazin inverse of A which commutes with A . Some known generalized inverses, such as the DMP inverse, the core-EP inverse and the weak group inverse, are particular kinds of the minimal rank weak Drazin inverse [21]. Dually, a right weak Drazin inverse of A is a solution to $A^{k+1}X = A^k$; and a minimal rank right weak Drazin inverse of A [3] is a solution to

$$A^{k+1}X = A^k \quad \text{and} \quad \text{rank}(X) = \text{rank}(A^D).$$

The weak DMP and weak MPD inverses were recently introduced in [14] as extensions of DMP and MPD inverses [10]. If X is an arbitrary but fixed minimal rank weak Drazin inverse of $A \in \mathbb{C}^{n \times n}$, the weak MPD inverse of A is given by

$$A^{w,\dagger,D} = A^\dagger X A.$$

For an arbitrary but fixed minimal rank right weak Drazin inverse Z of A , the weak DMP inverse of A is represented as

$$A^{w,D,\dagger} = A Z A^\dagger.$$

Motivated by significant properties of the minimal rank weak Drazin inverse, MPCEP and *CEPMP inverses, we continue to investigate these topics. In particular, we investigate generalized versions of the systems (1) and (2) in terms of a minimal rank weak Drazin inverse or a minimal rank right weak Drazin inverse. Solving new systems of matrix equations, in a natural way, we define new kinds of generalized inverses, which involves the DMP, MPD, MPCEP and *CEPMP inverses as special types. Thus, we introduce wider classes of generalized inverses. The next research directions are given in this paper.

(1) Since the core-EP inverse is a particular kind of minimal rank weak Drazin inverse, we generalize the system (1) using a minimal rank weak Drazin inverse of A instead of the core-EP inverse A^\oplus . As a solution of new weakened

system, we define new generalized inverse which is called the weak MPCEP inverse. We observe that MPCEP and MPD inverses are special cases of the weak MPCEP inverse.

(2) Replacing the *core-EP inverse A_{\oplus} with a minimal rank right weak Drazin inverse of A , we generalize the system (2) and introduce the weak *CEPMP inverse. The *CEPMP and DMP inverses are particular kinds of the weak *CEPMP inverse.

(3) Many characterizations of weak MPCEP and *CEPMP inverses are developed.

(4) Some formulae for weak MPCEP inverse are given.

(5) Perturbation results of weak MPCEP and *CEPMP inverses are proposed.

(6) We solve certain linear equations applying weak MPCEP and *CEPMP inverses.

(7) Consequently, we obtain new and known properties of the MPCEP, *CEPMP, MPD and DMP inverses as well as of two for the first time mentioned generalized inverses.

(8) In order to illustrate our results, numerical examples are presented.

This is the content of our paper. Section 2 involves definitions and characterizations of weak MPCEP and *CEPMP inverses. Formulae of weak MPCEP inverses are given in Section 3. Perturbation formulae and perturbation bounds of weak MPCEP and *CEPMP inverses are established in Section 4. Solvability of some linear equations is proved in Section 5 in terms of weak MPCEP and *CEPMP inverses. As a consequence, the major application of the Moore-Penrose inverse in solving linear equation is obtained.

2 Weak MPCEP and *CEPMP inverses

Based on a minimal rank weak Drazin inverse or minimal rank right weak Drazin inverse instead of the core-EP inverse and *core-EP inverse, we consider generalized versions of the systems (1) and (2). As solutions of new weaker systems of matrix equations, we naturally define two new types of generalized inverses.

Theorem 2.1. *Let $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$, X be a minimal rank weak Drazin inverse of A and Z be a minimal rank right weak Drazin inverse of A . Then*

(a) *$Y = A^\dagger AX$ is uniquely determined solution to the system of matrix equations*

$$YAY = Y, \quad AY = AX \quad \text{and} \quad YA = A^\dagger AXA. \quad (3)$$

(b) $Y = ZAA^\dagger$ is uniquely determined solution to the system of matrix equations

$$YAY = Y, \quad YA = ZA \quad \text{and} \quad AY = AZAA^\dagger.$$

Proof. (a) According to [21, Theorem 2.1], a minimal rank weak Drazin inverse X of A satisfies $XAX = X$. If $Y = A^\dagger AX$, we get $YA = A^\dagger AXA$, $AY = (AA^\dagger A)X = AX$ and

$$YAY = YAX = A^\dagger A(XAX) = A^\dagger AX = Y,$$

that is, (3) has a solution $Y = A^\dagger AX$.

A solution Y of (3) is uniquely determined because

$$Y = (YA)Y = A^\dagger AX(AY) = A^\dagger A(XAX) = A^\dagger AX.$$

(b) This part follows similarly by properties of a minimal rank right weak Drazin inverse Z of A given in [14, Lemma 1.1]. \square

Definition 2.1. Let $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$, X be a minimal rank weak Drazin inverse of A and Z be a minimal rank right weak Drazin inverse of A . Then

(a) the weak MPCEP inverse of A is introduced as

$$A^{w,\dagger,\oplus} = A^\dagger AX.$$

(b) the weak *CEPMP inverse of A is introduced as

$$A_{w,\oplus,\dagger} = ZAA^\dagger.$$

Classes of weak MPCEP and *CEPMP inverses contain as particular types the next well-known generalized inverses:

- for $X = A^D$, the weak MPCEP inverse reduces to the MPD inverse $A^\dagger AA^D = A^{\dagger,D}$ [10];
- if $Z = A^D$, the weak *CEPMP inverse is equal to the DMP inverse $A^D AA^\dagger = A^{D,\dagger}$ [10];
- in the case that $X = A^{D,\dagger}$ (or $Z = A^{\dagger,D}$), the weak MPCEP (or *CEPMP) inverse coincides with the CMP inverse $A^\dagger AA^{D,\dagger} = A^\dagger AA^D AA^\dagger = A^{c,\dagger}$ [11];
- when $X = A^\oplus$, the weak MPCEP inverse becomes the MPCEP inverse $A^\dagger AA^\oplus = A^{\dagger,\oplus}$ [4];

- taking $Z = A_{\oplus}$, the weak *CEPMP inverse is the *CEPMP inverse $A_{\oplus}AA^{\dagger} = A_{\oplus,\dagger}$ [4];
- for $X = A^{\otimes}$, the weak MPCEP inverse is equal to $A^{\dagger}AA^{\otimes}$, which represents, by Theorem 2.1, the unique solution to the system

$$YAY = Y, \quad AY = AA^{\otimes} \quad \text{and} \quad YA = A^{\dagger}AA^{\otimes}A;$$

- if $X = A^{\otimes_m}$, where $m \in \mathbb{N}$, the weak MPCEP inverse of A reduces to $A^{\dagger}AA^{\otimes_m}$, i.e. uniquely determined solution to

$$YAY = Y, \quad AY = AA^{\otimes_m} \quad \text{and} \quad YA = A^{\dagger}AA^{\otimes_m}A.$$

Remark that $A^{\dagger}AA^{\otimes}$ and $A^{\dagger}AA^{\otimes_m}$ represent new generalized inverses of A considering here for the first time in literature.

In the following example, we observe that the weak MPCEP inverse is different from the well-known generalized inverses and some of them are its special cases.

Example 2.1. *Considering*

$$A = \begin{bmatrix} 4 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

it follows $\text{ind}(A) = 2$,

$$A^D = \begin{bmatrix} \frac{1}{4} & \frac{1}{8} & \frac{1}{32} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad A^{\dagger} = \begin{bmatrix} \frac{1}{5} & 0 & 0 \\ \frac{1}{10} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

$$A^{\oplus} = \begin{bmatrix} \frac{1}{4} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad A^{\otimes} = \begin{bmatrix} \frac{1}{4} & \frac{1}{8} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

The minimal rank weak Drazin inverse X of A has the form

$$X = \begin{bmatrix} \frac{1}{4} & x_1 & x_2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

where $x_1, x_2 \in \mathbb{C}$. Thus, the weak MPCEP inverse of A is given by

$$Y = A^{\dagger}AX = \begin{bmatrix} \frac{1}{5} & \frac{4}{5}x_1 & \frac{4}{5}x_2 \\ \frac{1}{10} & \frac{2}{5}x_1 & \frac{2}{5}x_2 \\ 0 & 0 & 0 \end{bmatrix},$$

and the weak MPD inverse is

$$A^{w,\dagger,D} = A^\dagger X A = \begin{bmatrix} \frac{1}{5} & \frac{1}{10} & \frac{1}{5}x_1 \\ \frac{1}{10} & \frac{1}{20} & \frac{1}{10}x_1 \\ 0 & 0 & 0 \end{bmatrix}.$$

In the case that $x_1 = \frac{1}{8}$ and $x_2 = \frac{1}{32}$, the minimal rank weak Drazin inverse X reduces to the Drazin inverse A^D and the weak MPCEP inverse Y coincides with the MPD inverse

$$A^{\dagger,D} = A^\dagger A A^D = \begin{bmatrix} \frac{1}{5} & \frac{1}{10} & \frac{1}{40} \\ \frac{1}{10} & \frac{1}{20} & \frac{1}{80} \\ 0 & 0 & 0 \end{bmatrix}.$$

When $x_1 = x_2 = 0$, the minimal rank weak Drazin inverse X becomes the core-EP inverse A^\oplus and the weak MPCEP inverse Y is equal to the MPCEP inverse

$$A^{\dagger,\oplus} = A^\dagger A A^\oplus = \begin{bmatrix} \frac{1}{5} & 0 & 0 \\ \frac{1}{10} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

If $x_1 = \frac{1}{8}$ and $x_2 = 0$, X is equal to the weak group inverse A^\circledast and the weak MPCEP inverse Y is

$$A^\dagger A A^\circledast = \begin{bmatrix} \frac{1}{5} & \frac{1}{10} & 0 \\ \frac{1}{10} & \frac{1}{20} & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

The weak MPCEP inverse can be also considered as solution of the following systems of matrix equations.

Theorem 2.2. Let $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$ and X be a minimal rank weak Drazin inverse of A . The next statements are equivalent for $Y \in \mathbb{C}^{n \times n}$:

- (i) $Y = A^\dagger A X$;
- (ii) $Y A Y = Y$, $A Y A = A X A$, $A Y = A X$ and $Y A = A^\dagger A X A$;
- (iii) $Y A Y = Y$, $A Y = A X$ and $Y A^k = A^\dagger A^k$;
- (iv) $Y = A^\dagger A X A Y$ and $A Y = A X$;
- (v) $Y = A^\dagger A X A Y$ and $A^\dagger A Y = A^\dagger A X$;
- (vi) $Y = A^\dagger A X A Y$ and $A^* A Y = A^* A X$;
- (vii) $Y = A^\dagger A X A Y$ and $X A Y = X$;

- (viii) $Y = YAX$ and $YA = A^\dagger AXA$;
- (ix) $Y = YAX$ and $YAA^\dagger = A^\dagger AXAA^\dagger$;
- (x) $Y = YAX$ and $YAA^* = A^\dagger AXAA^*$;
- (xi) $Y = YAX$ and $YAX = A^\dagger AX$;
- (xii) $Y = YAX$ and $YA^k = A^\dagger A^k$;
- (xiii) $Y = YAX$ and $YAA^D = A^{\dagger, D}$;
- (xiv) $Y = A^\dagger AY$ and $AY = AX$;
- (xv) $Y = A^\dagger AY$ and $A^\dagger AY = A^\dagger AX$;
- (xvi) $Y = A^\dagger AY$ and $A^*AY = A^*AX$;
- (xvii) $YAXAY = Y$, $AXAYAXA = AXA$, $AXAY = AX$ and $YAXA = A^\dagger AXA$;
- (xviii) $YAXAY = Y$, $AXAY = AX$ and $YAXA = A^\dagger AXA$.

Proof. (i) \Leftrightarrow (ii): Theorem 2.1 implies this equivalence.

(i) \Rightarrow (iii): Recall that, by [21, Theorem 2.1], $XA^{k+1} = A^k$. For $Y = A^\dagger AX$, we get

$$YA^k = A^\dagger A(XA^{k+1})A^D = A^\dagger(A^{k+1}A^D) = A^\dagger A^k.$$

(iii) \Rightarrow (i): Applying [21, Theorem 2.1], we have $X = AX^2 = A^2X^3 = \dots = A^kX^{k+1}$. The assumptions $YAY = Y$, $AY = AX$ and $YA^k = A^\dagger A^k$ yield

$$Y = Y(AY) = YAX = (YA^k)AX^{k+1} = A^\dagger A(A^kX^{k+1}) = A^\dagger AX.$$

(ii) \Rightarrow (iv): One can observe that $YAY = Y$ and $YA = A^\dagger AXA$ give $Y = (YA)Y = A^\dagger AXAY$.

(iv) \Rightarrow (v): It is evident.

(v) \Rightarrow (vi): From $A^\dagger AY = A^\dagger AX$, we obtain $A^*AY = A^*A(A^\dagger AY) = (A^*AA^\dagger)AX = A^*AX$.

(vi) \Rightarrow (vii): The hypothesis $A^*AY = A^*AX$ implies

$$XAY = XAA^\dagger AY = X(A^\dagger)^*(A^*AY) = X(A^\dagger)^*A^*AX = XAX = X.$$

(vii) \Rightarrow (i): Using $Y = A^\dagger AXAY$ and $XAY = X$, we have that $Y = A^\dagger A(XAY) = A^\dagger AX$.

This proof can be finished in an analogy manner. \square

In the particular case that $X = A^D$, Theorem 2.2 implies characterizations of the MPD inverse and recovers [17, Corollary 3.1]. When $X = A^\oplus$ in Theorem 2.2, we characterize the MPCEP inverse and get [17, Corollary 3.3].

If $X = A^{\otimes m}$ in Theorem 2.2, a list of equivalent conditions for $Y = A^\dagger A A^{\otimes m}$ can be obtained.

Corollary 2.1. *Let $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$ and $m \in \mathbb{N}$. The following statements are equivalent for $Y \in \mathbb{C}^{n \times n}$:*

- (i) $Y = A^\dagger A A^{\otimes m}$;
- (ii) $YAY = Y$, $AYA = AA^{\otimes m}A$, $AY = AA^{\otimes m}$ and $YA = A^\dagger A A^{\otimes m}A$;
- (iii) $YAY = Y$, $AY = AA^{\otimes m}$ and $YA^k = A^\dagger A^k$;
- (iv) $Y = A^\dagger A A^{\otimes m}AY$ and $AY = AA^{\otimes m}$;
- (v) $Y = A^\dagger A A^{\otimes m}AY$ and $A^\dagger AY = A^\dagger A A^{\otimes m}$;
- (vi) $Y = A^\dagger A A^{\otimes m}AY$ and $A^*AY = A^*AA^{\otimes m}$;
- (vii) $Y = A^\dagger A A^{\otimes m}AY$ and $A^{\otimes m}AY = A^{\otimes m}$;
- (viii) $Y = YAA^{\otimes m}$ and $YA = A^\dagger A A^{\otimes m}A$;
- (ix) $Y = YAA^{\otimes m}$ and $YAA^\dagger = A^\dagger A A^{\otimes m}AA^\dagger$;
- (x) $Y = YAA^{\otimes m}$ and $YAA^* = A^\dagger A A^{\otimes m}AA^*$;
- (xi) $Y = YAA^{\otimes m}$ and $YAA^{\otimes m} = A^\dagger A A^{\otimes m}$;
- (xii) $Y = YAA^{\otimes m}$ and $YA^k = A^\dagger A^k$;
- (xiii) $Y = YAA^{\otimes m}$ and $YAA^D = A^{\dagger,D}$;
- (xiv) $Y = A^\dagger AY$ and $AY = AA^{\otimes m}$;
- (xv) $Y = A^\dagger AY$ and $A^\dagger AY = A^\dagger A A^{\otimes m}$;
- (xvi) $Y = A^\dagger AY$ and $A^*AY = A^*AA^{\otimes m}$;
- (xvii) $YAA^{\otimes m}AY = Y$, $AA^{\otimes m}AYAA^{\otimes m}A = AA^{\otimes m}A$, $AA^{\otimes m}AY = AA^{\otimes m}$ and $YAA^{\otimes m}A = A^\dagger A A^{\otimes m}A$;
- (xviii) $YAA^{\otimes m}AY = Y$, $AA^{\otimes m}AY = AA^{\otimes m}$ and $YAA^{\otimes m}A = A^\dagger A A^{\otimes m}A$.

Notice that $AA^{\otimes m}$ in Corollary 2.1 can be replaced with $(A^\oplus)^m A^m$ to obtain more characterizations of $Y = A^\dagger AA^{\otimes m}$. For $m = 1$ in Corollary 2.1, characterizations of $Y = A^\dagger AA^{\otimes m}$ can be given.

Necessary and sufficient conditions for a given matrix to be the weak *CEPMP inverse can be established as Theorem 2.2.

Theorem 2.3. *Let $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$ and Z be a minimal rank right weak Drazin inverse of A . The following statements are equivalent for $Y \in \mathbb{C}^{n \times n}$:*

- (i) $Y = ZAA^\dagger$;
- (ii) $YAY = Y$, $AYA = AZA$, $YA = ZA$ and $AY = AZAA^\dagger$;
- (iii) $YAY = Y$, $YA = ZA$ and $A^k Y = A^k A^\dagger$;
- (iv) $Y = YAZAA^\dagger$ and $YA = ZA$;
- (v) $Y = YAZAA^\dagger$ and $YAA^\dagger = ZAA^\dagger$;
- (vi) $Y = YAZAA^\dagger$ and $YAA^* = ZAA^*$;
- (vii) $Y = YAZAA^\dagger$ and $YAZ = Z$;
- (viii) $Y = ZAY$ and $AY = AZAA^\dagger$;
- (ix) $Y = ZAY$ and $A^\dagger AY = A^\dagger AZAA^\dagger$;
- (x) $Y = ZAY$ and $A^* AY = A^* AZAA^\dagger$;
- (xi) $Y = ZAY$ and $ZAY = ZAA^\dagger$;
- (xii) $Y = ZAY$ and $A^k Y = A^k A^\dagger$;
- (xiii) $Y = ZAY$ and $A^D AY = A^{D,\dagger}$;
- (xiv) $Y = YAA^\dagger$ and $YA = ZA$;
- (xv) $Y = YAA^\dagger$ and $YAA^\dagger = ZAA^\dagger$;
- (xvi) $Y = YAA^\dagger$ and $YAA^* = ZAA^*$;
- (xvii) $YAZAY = Y$, $AZAYAZA = AZA$, $YAZA = ZA$ and $AZAY = AZAA^\dagger$;
- (xviii) $YAZAY = Y$, $YAZA = ZA$ and $AZAY = AZAA^\dagger$.

Especially, for $Z = A^D$ and $Z = A_{\oplus}$ in Theorem 2.3, we can verify characterizations of the DMP inverse and the *CEPMP inverse proposed in [17, Corollary 2.1 and Corollary 2.3].

Theorem 2.1 gives that weak MPCEP and *CEPMP inverses are outer inverses of A , and, by Theorem 2.2 and Theorem 2.3, they are both outer and inner inverses of AXA and AZA , respectively. We consider ranges and null spaces of weak MPCEP and *CEPMP inverses and of projections defining by them. For subspaces G and H , $P_{G,H}$ marks the projector onto G along H ; and P_G is the orthogonal projector onto G .

Lemma 2.1. *Let $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$, X be a minimal rank weak Drazin inverse of A and Z be a minimal rank right weak Drazin inverse of A .*

(a) *For $Y = A^{\dagger}AX$, we have*

- (i) $AY = P_{\mathcal{R}(A^k), \mathcal{N}(X)};$
- (ii) $YA = P_{\mathcal{R}(A^{\dagger}A^k), \mathcal{N}(XA)};$
- (iii) $Y = A_{\mathcal{R}(A^{\dagger}A^k), \mathcal{N}(X)}^{(2)} = (AXA)_{\mathcal{R}(A^{\dagger}A^k), \mathcal{N}(X)}^{(1,2)}.$

(b) *For $Y = ZAA^{\dagger}$, we have*

- (i) $AY = P_{\mathcal{R}(AZ), \mathcal{N}(A^kA^{\dagger})};$
- (ii) $YA = P_{\mathcal{R}(Z), \mathcal{N}(A^k)};$
- (iii) $Y = A_{\mathcal{R}(Z), \mathcal{N}(A^kA^{\dagger})}^{(2)} = (AZA)_{\mathcal{R}(Z), \mathcal{N}(A^kA^{\dagger})}^{(1,2)}.$

Proof. (a) (i) Theorem 2.1 gives $AY = AX$. Because $\mathcal{R}(X) = \mathcal{R}(A^k)$, it follows $\mathcal{R}(AY) = \mathcal{R}(AX) = \mathcal{R}(A^{k+1}) = \mathcal{R}(A^k)$ and, by $XAX = X$, $\mathcal{N}(AY) = \mathcal{N}(AX) = \mathcal{N}(X)$.

(ii) Since $YA = A^{\dagger}AXA$, $XAX = X$ and $\mathcal{R}(X) = \mathcal{R}(A^k)$, we obtain

$$\mathcal{R}(YA) = \mathcal{R}(A^{\dagger}AXA) = \mathcal{R}(A^{\dagger}AX) = \mathcal{R}(A^{\dagger}AA^k) = \mathcal{R}(A^{\dagger}A^k).$$

We conclude that $\mathcal{N}(YA) = \mathcal{N}(A^{\dagger}AXA) = \mathcal{N}(AXA) = \mathcal{N}(XA)$.

(iii) By parts (ii) and (iii), note that $\mathcal{N}(Y) = \mathcal{N}(AY) = \mathcal{N}(X)$ and $\mathcal{R}(Y) = \mathcal{R}(YA) = \mathcal{R}(A^{\dagger}A^k)$. Theorem 2.2 implies that Y is both inner and outer inverse of AXA .

Similarly, we verify part (b). □

Using Urquhart formula [2, Theorem 13] and Lemma 2.1, we can get new formulae of weak MPCEP and *CEPMP inverses.

Corollary 2.2. *Let $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$, X be a minimal rank weak Drazin inverse of A and Z be a minimal rank right weak Drazin inverse of A . Then*

$$A^\dagger AX = A^\dagger A^k (XA^k)^\dagger X$$

and

$$ZAA^\dagger = Z(A^k Z)^\dagger A^k A^\dagger.$$

We develop new and recover well-known expressions for particular types of weak MPCEP and *CEPMP inverses applying Lemma 2.1 and Corollary 2.2.

Corollary 2.3. *If $A \in \mathbb{C}^{n \times n}$ and $k = \text{ind}(A)$, we have*

- (i) $A^{\dagger, D} = (AA^D A)^{(1,2)}_{\mathcal{R}(A^\dagger A^k), \mathcal{N}(A^k)} = A^\dagger A^k (A^D A^k)^\dagger A^D$;
- (ii) $A^{\dagger, \oplus} = (AA^\oplus A)^{(1,2)}_{\mathcal{R}(A^\dagger A^k), \mathcal{N}((A^k)^*)} = A^\dagger A^k (A^\oplus A^k)^\dagger A^\oplus$
 $= A^\dagger A^k (A^D A^k)^\dagger A^\oplus$;
- (iii) $A^\dagger AA^{\oplus m} = A^{(2)}_{\mathcal{R}(A^\dagger A^k), \mathcal{N}((A^k)^* A^m)} = (AA^{\oplus m} A)^{(1,2)}_{\mathcal{R}(A^\dagger A^k), \mathcal{N}((A^k)^* A^m)}$
 $= A^\dagger A^k (A^{\oplus m} A^k)^\dagger A^{\oplus m} = A^\dagger A^k (A^D A^{k+m})^\dagger A^{\oplus m}$, where $m \in \mathbb{N}$;
- (iv) $A^{D, \dagger} = (AA^D A)^{(1,2)}_{\mathcal{R}(A^k), \mathcal{N}(A^k A^\dagger)} = A^D (A^k A^D)^\dagger A^k A^\dagger$;
- (v) $A_{\oplus, \dagger} = (AA_\oplus A)^{(1,2)}_{\mathcal{R}((A^k)^*), \mathcal{N}(A^k A^\dagger)} = A_\oplus (A^k A_\oplus)^\dagger A^k A^\dagger$
 $= A_\oplus (A^k A^D)^\dagger A^k A^\dagger$.

Several equivalent conditions for MPCEP and *CEPMP inverses of A to be in the set $A\{1\}$, are investigated. Also, one can see that the weak MPCEP inverse $A^\dagger AX$ and weak MPD inverse $A^\dagger XA$ coincide if and only if X is equal to A^D .

Theorem 2.4. *Let $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$, X be a minimal rank weak Drazin inverse of A and Z be a minimal rank right weak Drazin inverse of A . Then*

- (i) $A^\dagger AX \in A\{1\}$ if and only if $X \in A\{1\}$ if and only if $\mathcal{N}(A) = \mathcal{N}(XA)$ if and only if $\mathcal{R}(A) = \mathcal{R}(A^k)$ if and only if $k \leq 1$;
- (ii) $ZAA^\dagger \in A\{1\}$ if and only if $Z \in A\{1\}$ if and only if $\mathcal{R}(A) = \mathcal{R}(AZ)$ if and only if $\mathcal{N}(A) = \mathcal{N}(A^k)$ if and only if $k \leq 1$;
- (iii) $A^\dagger AX = A^\dagger XA$ if and only if $AX = XA$ if and only if $X = A^D$.

Proof. (i) The first equivalence is clear by $AA^\dagger AXA = AXA$. Further, by $\mathcal{R}(X) = \mathcal{R}(A^k)$,

$$\begin{aligned} A = AXA &\Leftrightarrow A(I - XA) = 0 \Leftrightarrow \mathcal{R}(I - XA) \subseteq \mathcal{N}(A) \\ &\Leftrightarrow \mathcal{N}(XA) \subseteq \mathcal{N}(A) \Leftrightarrow \mathcal{N}(XA) = \mathcal{N}(A) \\ &\Leftrightarrow (I - AX)A = 0 \Leftrightarrow \mathcal{R}(A) \subseteq \mathcal{N}(I - AX) \\ &\Leftrightarrow \mathcal{R}(A) \subseteq \mathcal{R}(AX) \Leftrightarrow \mathcal{R}(A) = \mathcal{R}(AX) \\ &\Leftrightarrow \mathcal{R}(A) = \mathcal{R}(A^k). \end{aligned}$$

Part (ii) can be checked similarly.

(iii) It is clear, by $A^\dagger AX = A^\dagger XA$ and $X = AX^2$, that

$$AX = A(A^\dagger AX) = AA^\dagger XA = (AA^\dagger A)X^2A = (AX^2)A = XA.$$

The converse is obvious. \square

Weak MPD and DMP inverses can be presented as solutions of the next equations with constrain.

Theorem 2.5. *Let $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$, X be a minimal rank weak Drazin inverse of A and Z be a minimal rank right weak Drazin inverse of A . Then*

(i) $Y = A^\dagger AX$ is uniquely determined solution to

$$AY = P_{\mathcal{R}(A^k), \mathcal{N}(X)} \quad \text{and} \quad \mathcal{R}(Y) \subseteq \mathcal{R}(A^*); \quad (4)$$

(ii) $Y = A^\dagger AX$ is uniquely determined solution to

$$YA = P_{\mathcal{R}(A^\dagger A^k), \mathcal{N}(XA)} \quad \text{and} \quad \mathcal{R}(Y^*) \subseteq \mathcal{R}(X^*); \quad (5)$$

(iii) $Y = ZAA^\dagger$ is uniquely determined solution to

$$AY = P_{\mathcal{R}(AZ), \mathcal{N}(A^k A^\dagger)} \quad \text{and} \quad \mathcal{R}(Y) \subseteq \mathcal{R}(AZ);$$

(iv) $Y = ZAA^\dagger$ is uniquely determined solution to

$$YA = P_{\mathcal{R}(Z), \mathcal{N}(A^k)} \quad \text{and} \quad \mathcal{R}(Y^*) \subseteq \mathcal{R}(A).$$

Proof. (i) We deduce, using Lemma 2.1, that $Y = A^\dagger AX$ is a solution to (4).

If (4) has two solutions Y and U , then $A(Y - U) = 0$ and $\mathcal{R}(Y - U) \subseteq \mathcal{R}(A^*)$. So, $\mathcal{R}(Y - U) \subseteq \mathcal{N}(A) \cap \mathcal{R}(A^*) = \{0\}$, that is, $Y = A^\dagger AX$ is the unique solution to (4).

(ii) Notice that $Y^* = X^*A^\dagger A$ and Lemma 2.1 imply that (5) has a solution $Y = A^\dagger AX$.

For Y and U as two solutions of (5), it follows $A^*(Y^* - U^*) = 0$ and $\mathcal{R}(Y^* - U^*) \subseteq \mathcal{R}(X^*) = \mathcal{R}(X^*A^*)$. Thus, $\mathcal{R}(Y^* - U^*) \subseteq \mathcal{N}(A^*) \cap \mathcal{R}(X^*A^*) \subseteq \mathcal{N}(X^*A^*) \cap \mathcal{R}(X^*A^*) = \{0\}$, i.e. (5) has the unique solution $Y = A^\dagger AX$.

The rest can be proved analogously. \square

New characterizations of $Y = A^\dagger AX$ are presented in the next result.

Theorem 2.6. *Let $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$ and X be a minimal rank weak Drazin inverse of A . The next statements are equivalent for $Y \in \mathbb{C}^{n \times n}$:*

- (i) $Y = A^\dagger AX$;
- (ii) $\mathcal{R}(Y) = \mathcal{R}(A^\dagger A^k)$ and $AY = AX$;
- (iii) $\mathcal{R}(Y) \subseteq \mathcal{R}(A^\dagger A^k)$ and $AY = AX$;
- (iv) $\mathcal{R}(Y^*) = \mathcal{R}(X^*)$ and $YA = A^\dagger AXA$;
- (v) $\mathcal{R}(Y^*) \subseteq \mathcal{R}(X^*)$ and $YA = A^\dagger AXA$.

Proof. (i) \Rightarrow (ii): Lemma 2.1 and Theorem 2.2 yield this part.

(ii) \Rightarrow (iii): Clearly.

(iii) \Rightarrow (i): The hypothesis $\mathcal{R}(Y) \subseteq \mathcal{R}(A^\dagger A^k)$ gives $Y = A^\dagger A^k H$, for some $H \in \mathbb{C}^{n \times n}$. Using $AY = AX$, we observe that $Y = A^\dagger A(A^\dagger A^k H) = A^\dagger(AY) = A^\dagger AX$.

In a similar manner, the proof can be completed. \square

Theorem 2.6 can imply characterizations of special kinds of weak MPCEP inverses and we give consequences related to the MPCEP inverse and $Y = A^\dagger AA^{\otimes_m}$.

Corollary 2.4. *Let $A \in \mathbb{C}^{n \times n}$ with $k = \text{ind}(A)$. The next statements are equivalent for $Y \in \mathbb{C}^{n \times n}$:*

- (i) $Y = A^\dagger AA^\oplus (= A^{\dagger, \oplus})$;
- (ii) $\mathcal{R}(Y) = \mathcal{R}(A^\dagger A^k)$ and $AY = AA^\oplus$;
- (iii) $\mathcal{R}(Y) \subseteq \mathcal{R}(A^\dagger A^k)$ and $AY = AA^\oplus$;
- (iv) $\mathcal{R}(Y^*) = \mathcal{R}(A^k)$ and $YA = A^\dagger AA^\oplus A$;
- (v) $\mathcal{R}(Y^*) \subseteq \mathcal{R}(A^k)$ and $YA = A^\dagger AA^\oplus A$.

Corollary 2.5. *Let $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$ and $m \in \mathbb{N}$. The next statements are equivalent for $Y \in \mathbb{C}^{n \times n}$:*

- (i) $Y = A^\dagger A A^{\otimes_m}$;
- (ii) $\mathcal{R}(Y) = \mathcal{R}(A^\dagger A^k)$ and $AY = AA^{\otimes_m}$;
- (iii) $\mathcal{R}(Y) \subseteq \mathcal{R}(A^\dagger A^k)$ and $AY = AA^{\otimes_m}$;
- (iv) $\mathcal{R}(Y^*) = \mathcal{R}((A^m)^* A^k)$ and $YA = A^\dagger A A^{\otimes_m} A$;
- (v) $\mathcal{R}(Y^*) \subseteq \mathcal{R}((A^m)^* A^k)$ and $YA = A^\dagger A A^{\otimes_m} A$.

We establish the following characterizations of $Y = ZAA^\dagger$ as Theorem 2.6.

Theorem 2.7. *Let $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$ and Z be a minimal rank right weak Drazin inverse of A . The next statements are equivalent for $Y \in \mathbb{C}^{n \times n}$:*

- (i) $Y = ZAA^\dagger$;
- (ii) $\mathcal{R}(Y) = \mathcal{R}(Z)$ and $AY = AZAA^\dagger$;
- (iii) $\mathcal{R}(Y) \subseteq \mathcal{R}(Z)$ and $AY = AZAA^\dagger$;
- (iv) $\mathcal{R}(Y^*) = \mathcal{R}(A)$ and $YA = ZA$;
- (v) $\mathcal{R}(Y^*) \subseteq \mathcal{R}(A)$ and $YA = ZA$.

Theorem 2.7 can give characterizations of the DMP and *CEPMP inverses.

3 Formulae for weak MPCEP inverse

This section contains significant formulae of weak MPCEP inverse.

Firstly, we express the weak MPCEP and *CEPMP inverses using MPD and DMP inverses.

Lemma 3.1. *Let $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$, X be a minimal rank weak Drazin inverse of A and Z be a minimal rank right weak Drazin inverse of A . Then*

$$A^\dagger AX = A^{\dagger, D} AX$$

and

$$ZAA^\dagger = ZAA^{D,\dagger}.$$

Proof. For some $U \in \mathbb{C}^{n \times n}$, recall that $\mathcal{R}(X) = \mathcal{R}(A^D)$ gives $X = A^D AU = A^D AX$. Now, $A^\dagger AX = (A^\dagger AA^D)AX = A^{\dagger, D} AX$. The second formula follows in a same manner. \square

The canonical forms of the minimal rank weak Drazin inverse and Moore-Penrose inverse were given in [21] and [5], respectively, for a square matrix decomposed as in [19].

Lemma 3.2. [19] *If $A \in \mathbb{C}^{n \times n}$, $\text{ind}(A) = k$ and $\text{rank}(A^k) = t$, then*

$$A = U \begin{bmatrix} A_1 & A_2 \\ 0 & A_3 \end{bmatrix} U^*, \quad (6)$$

where $U \in \mathbb{C}^{n \times n}$ is unitary, $A_1 \in \mathbb{C}^{t \times t}$ is invertible upper-triangular and $A_3 \in \mathbb{C}^{(n-t) \times (n-t)}$ is a nilpotent of index k . In addition, a minimal rank weak Drazin inverse X of A is represented by [21]:

$$X = U \begin{bmatrix} A_1^{-1} & V \\ 0 & 0 \end{bmatrix} U^*, \quad (7)$$

where $V \in \mathbb{C}^{t \times (n-t)}$. Furthermore, the Moore-Penrose inverse of A is given as [5]:

$$A^\dagger = U \begin{bmatrix} A_1^* \Delta & -A_1^* \Delta A_2 A_3^\dagger \\ (I - A_3^\dagger A_3) A_2^* \Delta & A_3^\dagger - (I - A_3^\dagger A_3) A_2^* \Delta A_2 A_3^\dagger \end{bmatrix} U^*, \quad (8)$$

where $\Delta = (A_1 A_1^* + A_2 (I - A_3^\dagger A_3) A_2^*)^{-1}$.

We now propose the canonical form for the weak MPCEP inverse.

Lemma 3.3. *If $A \in \mathbb{C}^{n \times n}$ with $k = \text{ind}(A)$ is given by (6) and X is a minimal rank weak Drazin inverse of A represented by (7), then*

$$Y = A^\dagger A X = U \begin{bmatrix} A_1^* \Delta & A_1^* \Delta A_1 V \\ (I - A_3^\dagger A_3) A_2^* \Delta & (I - A_3^\dagger A_3) A_2^* \Delta A_1 V \end{bmatrix} U^*, \quad (9)$$

where $\Delta = (A_1 A_1^* + A_2 (I - A_3^\dagger A_3) A_2^*)^{-1}$.

Proof. The equalities (6), (7) and (8) yield

$$\begin{aligned} Y &= A^\dagger A X \\ &= U \begin{bmatrix} A_1^* \Delta A_1 & A_1^* \Delta A_2 (I - A_3^\dagger A_3) \\ (I - A_3^\dagger A_3) A_2^* \Delta A_1 & A_3^\dagger A_3 + (I - A_3^\dagger A_3) A_2^* \Delta A_2 (I - A_3^\dagger A_3) \end{bmatrix} U^* \\ &\times X \\ &= U \begin{bmatrix} A_1^* \Delta & A_1^* \Delta A_1 V \\ (I - A_3^\dagger A_3) A_2^* \Delta & (I - A_3^\dagger A_3) A_2^* \Delta A_1 V \end{bmatrix} U^*. \end{aligned}$$

□

Based on projections $F = I - AY$ and $G = I - YA$, the next expressions of the weak MPCEP inverse Y can be established.

Theorem 3.1. Let $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$ and X be a minimal rank weak Drazin inverse of A . For $Y = A^\dagger AX$, $F = I - AY$ and $G = I - YA$, $A \pm F$ are nonsingular and

$$Y = (I - G)(A \pm F)^{-1}(I - F). \quad (10)$$

Proof. Assume that A and Y , respectively, are represented as in (6) and (9). Then

$$\begin{aligned} F &= I - AY = I - U \begin{bmatrix} I & A_1 V \\ 0 & 0 \end{bmatrix} U^* \\ &= U \begin{bmatrix} 0 & -A_1 V \\ 0 & I \end{bmatrix} U^* \end{aligned}$$

and

$$\begin{aligned} I - G &= YA \\ &= U \begin{bmatrix} A_1^* \Delta A_1 & A_1^* \Delta (A_2 + A_1 V A_3) \\ (I - A_3^\dagger A_3) A_2^* \Delta A_1 & (I - A_3^\dagger A_3) A_2^* \Delta (A_2 + A_1 V A_3) \end{bmatrix} U^*. \end{aligned}$$

Since A_1 and $A_3 \pm I$ are nonsingular, we deduce that

$$A \pm F = U \begin{bmatrix} A_1 & A_2 \mp A_1 V \\ 0 & A_3 \pm I \end{bmatrix} U^*$$

is nonsingular too and

$$(A \pm F)^{-1} = U \begin{bmatrix} A_1^{-1} & -A_1^{-1}(A_2 \mp A_1 V)(A_3 \pm I)^{-1} \\ 0 & (A_3 \pm I)^{-1} \end{bmatrix} U^*.$$

Now, (10) is satisfied by

$$\begin{aligned} &(I - G)(A \pm F)^{-1}(I - F) = \\ &= (I - G)U \begin{bmatrix} A_1^{-1} & V \\ 0 & 0 \end{bmatrix} U^* \\ &= U \begin{bmatrix} A_1^* \Delta & A_1^* \Delta A_1 V \\ (I - A_3^\dagger A_3) A_2^* \Delta & (I - A_3^\dagger A_3) A_2^* \Delta A_1 V \end{bmatrix} U^* \\ &= Y. \end{aligned}$$

□

The following example is given to illustrate Theorem 3.1.

Example 3.1. For the matrix A as in Example 2.1, we have

$$I - F = AY = \begin{bmatrix} 1 & 4x_1 & 4x_2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad F = I - AY = \begin{bmatrix} 0 & -4x_1 & -4x_2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

and

$$I - G = YA = \begin{bmatrix} \frac{4}{5} & \frac{2}{5} & \frac{4}{5}x_1 \\ \frac{2}{5} & \frac{1}{5} & \frac{2}{5}x_1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Further

$$A + F = \begin{bmatrix} 4 & 2 - 4x_1 & -4x_2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad A - F = \begin{bmatrix} 4 & 2 + 4x_1 & 4x_2 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix},$$

$$(A + F)^{-1} = \begin{bmatrix} \frac{1}{4} & -\frac{1}{2} + x_1 & \frac{1}{2} - x_1 + x_2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

and

$$(A - F)^{-1} = \begin{bmatrix} \frac{1}{4} & \frac{1}{2} + x_1 & \frac{1}{2} + x_1 + x_2 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{bmatrix}.$$

Using elementary calculations, we get $(I - G)(A \pm F)^{-1}(I - F) = Y$.

The set of all weak MPCEP inverses of A can be described in the next manners.

Theorem 3.2. Let $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$ and X be a minimal rank weak Drazin inverse of A . The set of all weak MPCEP inverses of A is expressed as:

- (i) $\{A^{\dagger,D} + A^{\dagger,D}AE(I - A^D A) : E \in \mathbb{C}^{n \times n}\};$
- (ii) $\{A^{\dagger}AX + A^{\dagger}AXF(I - XA) : F \in \mathbb{C}^{n \times n}\};$
- (iii) $\{A^{\dagger}AX + A^{\dagger}AXF(I - AX) : F \in \mathbb{C}^{n \times n}\}.$

Proof. (i) The set of all minimal rank weak Drazin inverses of A is given in [3, Theorem 2] as $\{A^D + A^D AE(I - A^D A) : E \in \mathbb{C}^{n \times n}\}$. Using the definition of weak MPCEP inverse, we compete this part.

(ii) \wedge (iii) The set of all minimal rank weak Drazin inverses of A is presented in [21, Theorem 2.8] as $\{X + XF(I - XA) : F \in \mathbb{C}^{n \times n}\}$ or $\{X + XF(I - AX) : F \in \mathbb{C}^{n \times n}\}$. \square

4 Perturbation results of weak MPCEP and *CEPMP inverses

One significant part of the theory of generalized inverses is perturbation theory. Perturbation results for the Moore-Penrose inverse are given in [2] and for the minimal rank weak Drazin inverse in [14].

Perturbation expressions and perturbation bounds of weak MPCEP inverse are firstly investigated in this section.

Theorem 4.1. *Let $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$, X be a minimal rank weak Drazin inverse of A , $Y = A^\dagger AX$ and $B = A + E \in \mathbb{C}^{n \times n}$. If $\mathcal{R}(E) \subseteq \mathcal{R}(A^k)$, $\mathcal{R}(E^*) \subseteq \mathcal{R}((XA)^*)$ and $\max\{\|EX\|, \|A^\dagger E\|\} < 1$, then*

$$(I + YE)^{-1}Y = B^\dagger B(I + XE)^{-1}X$$

and

$$Y(I + EX)^{-1} = B^\dagger BX(I + EX)^{-1},$$

where $X(I + EX)^{-1}$ is a minimal rank weak Drazin inverse of B . In addition,

$$B(I + XE)^{-1}X = B(B^\dagger B(I + XE)^{-1}X) = AY,$$

$$B^\dagger BX(I + EX)^{-1}B = YA,$$

$$\frac{\|Y\|}{1 + \|YE\|} \leq \|B^\dagger B(I + XE)^{-1}X\| \leq \frac{\|Y\|}{1 - \|YE\|}$$

and

$$\frac{\|Y\|}{1 + \|EX\|} \leq \|B^\dagger BX(I + EX)^{-1}\| \leq \frac{\|Y\|}{1 - \|EX\|}.$$

Proof. By [2], $\mathcal{R}(E) \subseteq \mathcal{R}(A^k) \subseteq \mathcal{R}(A)$ and $\mathcal{R}(E^*) \subseteq \mathcal{R}((XA)^*) \subseteq \mathcal{R}(A^*)$ imply

$$B^\dagger = (I + A^\dagger E)^{-1}A^\dagger = A^\dagger(I + EA^\dagger)^{-1},$$

$$BB^\dagger = AA^\dagger, \quad B^\dagger B = A^\dagger A.$$

Because $\mathcal{R}(E) \subseteq \mathcal{R}(A^k) = \mathcal{R}(X)$, we deduce that $E = XU = AX^2U = AXE$. From $\mathcal{R}(E^*) \subseteq \mathcal{R}(A^*)$, $E = EA^\dagger A$. The assumption $\|A^\dagger E\| < 1$ gives that $I + YE = I + A^\dagger AXE = I + A^\dagger E$ is nonsingular. Using $\|EX\| < 1$, $I + EY = I + EA^\dagger AX = I + EX$ is nonsingular. According to [14, Theorem 4.1],

$$\begin{aligned} (I + YE)^{-1}Y &= (I + A^\dagger E)^{-1}A^\dagger(AX) \\ &= B^\dagger B(I + XE)^{-1}X \end{aligned}$$

and

$$Y(I + EY)^{-1} = A^\dagger AX(I + EX)^{-1} = B^\dagger BX(I + EX)^{-1}.$$

Since $B = A + E = A + AXE = A + AA^\dagger AXE = A(I + YE)$, we conclude that $B(I + XE)^{-1}X = B(B^\dagger B(I + XE)^{-1}X) = A(I + YE)(I + YE)^{-1}Y = AY$. Notice that $\mathcal{R}(E^*) \subseteq \mathcal{R}((XA)^*)$ yields $E = HXA = (HXA)XA = EXA$, for some $H \in \mathbb{C}^{n \times n}$. Therefore, $B = (I + EX)A = (I + EY)A$ and $(B^\dagger BX(I + EX)^{-1})B = Y(I + EY)^{-1}(I + EY)A = YA$. \square

By Theorem 4.1, we can get as a special case perturbation formulae for the MPD inverse given in [14, Corollary 4.1(i)].

For $X = A^\oplus$ in Theorem 4.1, perturbation results for the MPCEP inverse can be established.

Corollary 4.1. *Let $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$ and $B = A + E \in \mathbb{C}^{n \times n}$. If $\mathcal{R}(E) \subseteq \mathcal{R}(A^k)$, $\mathcal{R}(E^*) \subseteq \mathcal{R}(A^*A^k)$ and $\max\{\|EA^\oplus\|, \|A^\dagger E\|\} < 1$, then*

$$B^{\dagger, \oplus} = (I + A^{\dagger, \oplus} E)^{-1} A^{\dagger, \oplus} = A^{\dagger, \oplus} (I + EA^{\dagger, \oplus})^{-1},$$

$$BB^{\dagger, \oplus} = AA^{\dagger, \oplus}, B^{\dagger, \oplus}B = A^{\dagger, \oplus}A \text{ and}$$

$$\frac{\|A^{\dagger, \oplus}\|}{1 + \|A^{\dagger, \oplus}E\|} \leq \|B^{\dagger, \oplus}\| \leq \frac{\|A^{\dagger, \oplus}\|}{1 - \|A^{\dagger, \oplus}E\|}.$$

Proof. According to [13, Corollary 3.1] and $AA^\oplus E = A^k(A^k)^\dagger E = E$, $B^\oplus = (I + A^\oplus E)^{-1}A^\oplus = A^\oplus(I + EA^\oplus)^{-1}$. The rest follows by Theorem 4.1. \square

Perturbation expressions of the weak *CEPMP inverse can be proved in an analogy manner.

Theorem 4.2. *Let $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$, Z be a minimal rank right weak Drazin inverse of A , $Y = ZAA^\dagger$ and $B = A + E \in \mathbb{C}^{n \times n}$. If $\mathcal{R}(E) \subseteq \mathcal{R}(AZ)$, $\mathcal{R}(E^*) \subseteq \mathcal{R}((A^k)^*)$ and $\max\{\|ZE\|, \|EA^\dagger\|\} < 1$, then*

$$(I + YE)^{-1}Y = (I + ZE)^{-1}ZBB^\dagger$$

and

$$Y(I + EY)^{-1} = Z(I + EZ)^{-1}BB^\dagger,$$

where $(I + ZE)^{-1}Z$ is a minimal rank right weak Drazin inverse of B . In addition,

$$B(I + ZE)^{-1}ZBB^\dagger = AY,$$

$$Z(I + EZ)^{-1}B = (Z(I + EZ)^{-1}BB^\dagger)B = YA,$$

$$\frac{\|Y\|}{1 + \|YE\|} \leq \|(I + ZE)^{-1}ZBB^\dagger\| \leq \frac{\|Y\|}{1 - \|YE\|}$$

and

$$\frac{\|Y\|}{1 + \|EY\|} \leq \|Z(I + EZ)^{-1}BB^\dagger\| \leq \frac{\|Y\|}{1 - \|EY\|}.$$

When $Z = A_{\oplus}$ in Theorem 4.2, we obtain the next perturbation results for the *CEPMP inverse.

Corollary 4.2. *Let $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$ and $B = A + E \in \mathbb{C}^{n \times n}$. If $\mathcal{R}(E) \subseteq \mathcal{R}(A(A^k)^*)$, $\mathcal{R}(E^*) \subseteq \mathcal{R}((A^k)^*)$ and $\max\{\|A_{\oplus}E\|, \|EA^\dagger\|\} < 1$, then*

$$B_{\oplus, \dagger} = (I + A_{\oplus, \dagger}E)^{-1}A_{\oplus, \dagger} = A_{\oplus, \dagger}(I + EA_{\oplus, \dagger})^{-1},$$

$BB_{\oplus, \dagger} = AA_{\oplus, \dagger}$, $B_{\oplus, \dagger}B = A_{\oplus, \dagger}A$ and

$$\frac{\|A_{\oplus, \dagger}\|}{1 + \|A_{\oplus, \dagger}E\|} \leq \|B_{\oplus, \dagger}\| \leq \frac{\|A_{\oplus, \dagger}\|}{1 - \|A_{\oplus, \dagger}E\|}.$$

5 Applications of weak MPCEP and *CEPMP inverses

Solvability of certain linear equations can be obtained applying weak MPCEP and *CEPMP inverses.

Theorem 5.1. *Let $B \in \mathbb{C}^{n \times q}$, $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$ and X be a minimal rank weak Drazin inverse of A . For $Y = A^\dagger AX$, the equation (with unknown U)*

$$XAU = XB \tag{11}$$

has the general solution in the next form

$$U = YB + (I - YA)V, \tag{12}$$

for arbitrary $V \in \mathbb{C}^{n \times q}$.

Proof. Theorem 2.2 implies that $XAY = X$. If U has the form (12), we get

$$XAU = XAYB + XA(I - YA)V = XB,$$

that is, (11) holds.

When the equation (11) has a solution U , then

$$YAU = A^\dagger A(XAU) = A^\dagger AXB = YB.$$

Hence, $U = YB + U - YAU = YB + (I - YA)U$ has the form as in (12). \square

Consequently, Theorem 5.1 gives the next result.

Corollary 5.1. *If $B \in \mathbb{C}^{n \times q}$, $A \in \mathbb{C}^{n \times n}$ and $k = \text{ind}(A)$, the equation*

- (i) $A^D AU = A^D B$ has the general solution $U = A^{\dagger, D} B + (I - A^{\dagger, D} A)V$;
- (ii) $A^{\oplus} AU = A^{\oplus} B$ has the general solution $U = A^{\dagger, \oplus} B + (I - A^{\dagger, \oplus} A)V$;
- (iii) $A^{\otimes_m} AU = A^{\otimes_m} B$, where $m \in \mathbb{N}$, has the general solution $U = A^{\dagger} A A^{\otimes_m} B + (I - A^{\dagger} A A^{\otimes_m} A)V$.

for arbitrary $V \in \mathbb{C}^{n \times q}$.

As Theorem 5.1, we can verify solvability of the next equations.

Theorem 5.2. *Let $B \in \mathbb{C}^{n \times q}$, $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$ and X be a minimal rank weak Drazin inverse of A . For $Y = A^{\dagger} AX$, the equation*

$$AU = AXB$$

has the general solution in the next form

$$U = YB + (I - A^{\dagger} A)V,$$

for arbitrary $V \in \mathbb{C}^{n \times q}$.

If we add the condition $\mathcal{R}(B) \subseteq \mathcal{R}(A^k)$ in Theorem 5.2, we obtain the main well-known role of the Moore-Penrose inverse in solving linear equations [12].

Corollary 5.2. *Let $B \in \mathbb{C}^{n \times q}$, $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$ and X be a minimal rank weak Drazin inverse of A . For $Y = A^{\dagger} AX$, the equation*

$$AU = B, \quad \mathcal{R}(B) \subseteq \mathcal{R}(A^k),$$

has the general solution in the next form

$$U = A^{\dagger} B + (I - A^{\dagger} A)V,$$

for arbitrary $V \in \mathbb{C}^{n \times q}$.

Proof. Since $\mathcal{R}(B) \subseteq \mathcal{R}(A^k) = \mathcal{R}(X)$ and $X = AX^2$, we conclude that $B = XH = AX(XH) = AXB$, for some $H \in \mathbb{C}^{n \times q}$. The rest is clear by Theorem 5.2. \square

Theorem 5.3. *Let $B \in \mathbb{C}^{q \times n}$, $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$ and X be a minimal rank weak Drazin inverse of A . For $Y = A^{\dagger} AX$, the equation*

$$UA^k = BA^{\dagger} A^k$$

has the general solution in the next form

$$U = BY + V(I - AX),$$

for arbitrary $V \in \mathbb{C}^{q \times n}$.

Remark that the equation $UA^k = BA^\dagger A^k$ is equivalent to $UA^D = BA^\dagger A^D$ and so these equalities have the solution in the same form.

Analogously, we solve several linear equations using weak *CEPMP inverse.

Theorem 5.4. *Let $B \in \mathbb{C}^{q \times n}$, $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$ and Z be a minimal rank right weak Drazin inverse of A . For $Y = ZAA^\dagger$, the equation*

$$UAZ = BZ$$

has the general solution in the next form

$$U = BY + V(I - AY),$$

for arbitrary $V \in \mathbb{C}^{q \times n}$.

Corollary 5.3. *If $B \in \mathbb{C}^{q \times n}$, $A \in \mathbb{C}^{n \times n}$ and $k = \text{ind}(A)$, the equation*

- (i) $UA^D A = BA^D$ has the general solution $U = BA^{D,\dagger} + V(I - AA^{D,\dagger})$;
- (ii) $UAA_\oplus = BA_\oplus$ has the general solution $U = BA_{\oplus,\dagger} + V(I - AA_{\oplus,\dagger})$.

for arbitrary $V \in \mathbb{C}^{q \times n}$.

Theorem 5.5. *Let $B \in \mathbb{C}^{q \times n}$, $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$ and Z be a minimal rank right weak Drazin inverse of A . For $Y = ZAA^\dagger$, the equation*

$$UA = BZA$$

has the general solution in the next form

$$U = BY + V(I - AA^\dagger),$$

for arbitrary $V \in \mathbb{C}^{q \times n}$.

Corollary 5.4. *Let $B \in \mathbb{C}^{q \times n}$, $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$ and Z be a minimal rank right weak Drazin inverse of A . For $Y = ZAA^\dagger$, the equation*

$$UA = B, \quad \mathcal{N}(A^k) \subseteq \mathcal{N}(B),$$

has the general solution in the next form

$$U = BA^\dagger + V(I - AA^\dagger),$$

for arbitrary $V \in \mathbb{C}^{q \times n}$.

Theorem 5.6. Let $B \in \mathbb{C}^{n \times q}$, $A \in \mathbb{C}^{n \times n}$, $k = \text{ind}(A)$ and Z be a minimal rank right weak Drazin inverse of A . For $Y = ZAA^\dagger$, the equation

$$A^k U = A^k A^\dagger B$$

has the general solution in the next form

$$U = YB + (I - ZA)V,$$

for arbitrary $V \in \mathbb{C}^{n \times q}$.

Theorem 5.1 can be confirmed in the following example.

Example 5.1. Let A be the matrix as in Example 2.1,

$$B = \begin{bmatrix} 10 & 20 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad V = \begin{bmatrix} v_1 & v_2 \\ v_3 & v_4 \\ v_5 & v_6 \end{bmatrix}.$$

Since

$$\begin{aligned} U &= YB + (I - YA)V \\ &= \begin{bmatrix} 2 + \frac{1}{5}v_1 - \frac{2}{5}v_3 - \frac{4}{5}x_1v_5 & 4 + \frac{1}{5}v_2 - \frac{2}{5}v_4 - \frac{4}{5}x_1v_6 \\ 1 - \frac{2}{5}v_1 + \frac{4}{5}v_3 - \frac{2}{5}x_1v_5 & 2 - \frac{2}{5}v_2 + \frac{4}{5}v_4 - \frac{2}{5}x_1v_6 \\ v_5 & v_6 \end{bmatrix}, \end{aligned}$$

we verify that

$$XAU = \begin{bmatrix} \frac{5}{2} & 5 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} = XB,$$

i.e. Theorem 5.1 is confirmed.

Acknowledgements. The author is supported by the Ministry of Science, Technological Development and Innovations, Republic of Serbia, grant number 451-03-137/2025-03/200124.

References

[1] O.M. Baksalary, G. Trenkler, *Core inverse of matrices*, Linear Multilinear Algebra 58(6) (2010), 681-697.

- [2] A. Ben-Israel, T.N.E. Greville, *Generalized inverses: theory and applications*, Canadian Mathematical Society, Springer, New York, Berlin, Heidelberg, Hong Kong, London, Milan, Paris, Tokyo, 2003.
- [3] S.L. Campbell, C.D. Meyer, *Weak Drazin inverses*, Linear Algebra Appl. 20 (1978), 167–178.
- [4] J.L. Chen, D. Mosić, S.Z. Xu, *On a new generalized inverse for Hilbert space operators*, Quaest. Math. 43 (2020), 1331–1348.
- [5] C.Y. Deng, H.K. Du, *Representations of the Moore-Penrose inverse of 2×2 block operator valued matrices*, J. Korean Math. Soc. 46(6) (2009), 1139–1150.
- [6] Y. Gao, J. Chen, *Pseudo core inverses in rings with involution*, Commun. Algebra 61 (2018), 886–891.
- [7] I.I. Kyrchei, D. Mosić, P.S. Stanimirović, *MPCEP-*CEPMP-solutions of some restricted quaternion matrix equations*, Adv. Appl. Clifford Algebras 32 (2022), 16.
- [8] I.I. Kyrchei, D. Mosić, P.S. Stanimirović, *Representations of quaternion W -MPCEP, W -CEPMP and W -MPCEPMP inverses*, Adv. Appl. Clifford Algebras 32 (2022), 35.
- [9] I.I. Kyrchei, D. Mosić, P.S. Stanimirović, *W -MPCEP-N-CEPMP-solutions to quaternion matrix equations with constrains*, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 117(4) (2023), 155.
- [10] S.B. Malik, N. Thome, *On a new generalized inverse for matrices of an arbitrary index*, Appl. Math. Comput. 226 (2014), 575–580.
- [11] M. Mehdiipour, A. Salemi, *On a new generalized inverse of matrices*, Linear Multilinear Algebra 66(5) (2018), 1046–1053.
- [12] E.H. Moore, *On the reciprocal of the general algebraic matrix*, Bull. Amer. Math. Soc. 26 (1920), 394–395.
- [13] D. Mosić, *Perturbation of the weighted core-EP inverse*, Ann. Funct. Anal. 11 (2020), 75–86.
- [14] D. Mosić, *Weak MPD and DMP inverses*, J. Math. Anal. Appl. 540(2) (2024), 128653.
- [15] D. Mosić, I.I. Kyrchei, P.S. Stanimirović, *Representations and properties for the MPCEP inverse*, J. Appl. Math. Comput. 67, 101–130 (2021).

- [16] K.M. Prasad, K.S. Mohana, *Core-EP inverse*, Linear Multilinear Algebra 62(6) (2014), 792–802.
- [17] P.S. Stanimirović, D. Mosić, Y. Wei, *A Survey of Composite Generalized Inverses*, Chapter 1 In: Generalized Inverses: Algorithms and Applications (editor Ivan Kyrchei), Series: Mathematics Research Development, Nova Science Publishers Inc, New York, 2022, ISBN: 978-1-68507-356-5, DOI: <https://doi.org/10.52305/MJVE4994>.
- [18] K.S. Stojanović, D. Mosić, *Weighted MPCEP inverse of an operator between Hilbert spaces*, Bull. Iran. Math. Soc. 48 (2022), 53–71.
- [19] H. Wang, *Core-EP decomposition and its applications*, Linear Algebra Appl. 508 (2016), 289–300.
- [20] H. Wang, J. Chen, *Weak group inverse*, Open Mathematics 16 (2018), 1218–1232.
- [21] C. Wu, J. Chen, *Minimal rank weak Drazin inverses: a class of outer inverses with prescribed range*, Electron. J. Linear Algebra 39 (2023), 1–16.
- [22] S.Z. Xu, X.F. Cao, X. Hua, B.L. Yu, *On one-sided MPCEP-inverse for matrices of an arbitrary index*, Ital. J. Pure Appl. Math. 51 (2024), 519–537.
- [23] J. Yao, X. Liu, H. Jin, *Characterizations of the generalized MPCEP inverse of rectangular matrices*, J. Appl. Math. 2023(1) (2023), 6235312.
- [24] M. Zhou, J. Chen, *Integral representations of two generalized core inverses*, Appl. Math. Comput. 333 (2018), 187–193.
- [25] Y. Zhou, J. Chen, M. Zhou, *m-weak group inverses in a ring with involution*, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (2021), 2.

Dijana Mosić,
 Faculty of Sciences and Mathematics,
 University of Niš,
 P.O. Box 224, 18000 Niš, Serbia.
 Email: dijana@pmf.ni.ac.rs