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Weak MPCEP and *CEPMP inverses

Dijana Mosić

Abstract

We generalize the systems of equations, which introduced the MP-
CEP and *CEPMP inverses, using a minimal rank weak Drazin inverse
and a minimal rank right weak Drazin inverse. In order to solve new
generalized systems of matrix equations, we define new types of gen-
eralized inverses, the so-called weak MPCEP and *CEPMP inverses.
The DMP, MPD, MPCEP and *CEPMP inverses are particular kinds
of weak MPCEP and *CEPMP inverses. We show characterizations
and formulae for weak MPCEP and *CEPMP inverses as well as their
perturbation results. As application of weak MPCEP and *CEPMP in-
verses, we prove solvability of certain linear equations and recover the
main application of the Moore–Penrose inverse.

1 Introduction

Let Cm×n be the set of m × n complex matrices. Denote by N(A), R(A),
rank(A) and A∗, respectively, the null space, range, rank and conjugate trans-
pose of A ∈ Cm×n.

Solving systems of matrix equations, various kinds of generalized inverses
are defined. The principal application of generalized inverses is in solving linear
systems, where they are used in much the same way as ordinary inverses in
the nonsingular case.
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The Moore-Penrose inverse of A ∈ Cm×n is unique X = A† ∈ Cn×m

satisfying AXA = A, XAX = X, (AX)∗ = AX and (XA)∗ = XA [2]. If
only XAX = X (or AXA = A) holds, then X is an outer (or inner) inverse
of A. For subspaces T of Cn and S of Cm with dimensions s ≤ rank(A) and
m − s, respectively, in the case that XAX = X, R(X) = T and N(X) = S,

X = A
(2)
T,S is unique (if it exists) [2].

The Drazin inverse of A ∈ Cn×n with the index k = ind(A) is unique
X = AD ∈ Cn×n such that Ak+1X = Ak, XAX = X and AX = XA [2].
If ind(A) = 1, A# = AD is the group inverse of A. The core–EP inverse
of A ∈ Cn×n is unique X = A †© ∈ Cn×n satisfying XAX = X and R(X) =
R(X∗) = R(Ak), where k = ind(A) [16]. Notice that A †© = ADAk(Ak)† [6]. As
a dual core-EP, the ∗core–EP inverse of A is expressed by A †© = (Ak)†AkAD

[24]. When ind(A) = 1, A#© = A †© is the core inverse of A and A#© = A †© is
the dual core inverse of A [1].

Combining in adequate manners the above mentioned generalized inverses,
some known generalized inverses can be represented:

- the DMP inverse AD,† = ADAA† [10],

- the MPD inverse A†,D = A†AAD [10],

- the CMP inverse Ac,† = A†AADAA† [11],

- the weak group inverse Aw© = (A †©)2A [20],

- the m-weak group inverse Aw©m = (A †©)m+1Am, where m ∈ N [25].

As a compose of the Moore-Penrose inverse and core-EP inverse, the MP-
CEP inverse was defined in [4] for bounded linear Hilbert space operators. The
MPCEP inverse of A ∈ Cn×n is uniquely determined solution to the system

XAX = X, XA = A†AA †©A and AX = AA †©, (1)

which can be expressed as

A†, †© = A†AA †©.

The ∗CEPMP inverse of A is unique solution to

XAX = X, AX = AA †©AA† and XA = A †©A, (2)

and it is given by
A †©,† = A †©AA†.

Interesting properties of the MPCEP inverse for complex matrices can
be found in [15]. The definition of the MPCEP inverse was generalized to
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operators between two Hilbert spaces in [18] and to quaternion matrices in
[7, 8, 9]. New extensions of the MPCEP inverse were proposed in [22, 23].

As an extension of the Drazin inverse, a weak Drazin inverse of A ∈ Cn×n

with k = ind(A), was presented in [3] as a solution X ∈ Cn×n of the equation
XAk+1 = Ak. Remark that the weak Drazin inverse is not uniquely deter-
mined, but it is easier to calculate weak Drazin inverse than Drazin inverse
and applied it instead of Drazin inverse in the theory of differential equations,
Markov chains and so on. A minimal rank weak Drazin inverse X of A [3]
satisfies

XAk+1 = Ak and rank(X) = rank(AD).

The Drazin inverse AD is unique minimal rank weak Drazin inverse of A which
commutes with A. Some known generalized inverses, such as the DMP inverse,
the core–EP inverse and the weak group inverse, are particular kinds of the
minimal rank weak Drazin inverse [21]. Dually, a right weak Drazin inverse of
A is a solution to Ak+1X = Ak; and a minimal rank right weak Drazin inverse
of A [3] is a solution to

Ak+1X = Ak and rank(X) = rank(AD).

The weak DMP and weak MPD inverses were recently introduced in [14]
as extensions of DMP and MPD inverses [10]. If X is an arbitrary but fixed
minimal rank weak Drazin inverse of A ∈ Cn×n, the weak MPD inverse of A
is given by

Aw,†,D = A†XA.

For an arbitrary but fixed minimal rank right weak Drazin inverse Z of A, the
weak DMP inverse of A is represented as

Aw,D,† = AZA†.

Motivated by significant properties of the minimal rank weak Drazin in-
verse, MPCEP and *CEPMP inverses, we continue to investigate these topics.
In particular, we investigate generalized versions of the systems (1) and (2)
in terms of a minimal rank weak Drazin inverse or a minimal rank right weak
Drazin inverse. Solving new systems of matrix equations, in a natural way,
we define new kinds of generalized inverses, which involves the DMP, MPD,
MPCEP and *CEPMP inverses as special types. Thus, we introduce wider
classes of generalized inverses. The next research directions are given in this
paper.

(1) Since the core–EP inverse is a particular kind of minimal rank weak
Drazin inverse, we generalize the system (1) using a minimal rank weak Drazin
inverse of A instead of the core–EP inverse A †©. As a solution of new weakened
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system, we define new generalized inverse which is called the weak MPCEP
inverse. We observe that MPCEP and MPD inverses are special cases of the
weak MPCEP inverse.

(2) Replacing the *core–EP inverse A †© with a minimal rank right weak
Drazin inverse of A, we generalize the system (2) and introduce the weak
*CEPMP inverse. The *CEPMP and DMP inverses are particular kinds of
the weak *CEPMP inverse.

(3) Many characterizations of weak MPCEP and *CEPMP inverses are
developed.

(4) Some formulae for weak MPCEP inverse are given.
(5) Perturbation results of weak MPCEP and *CEPMP inverses are pro-

posed.
(6) We solve certain linear equations applying weak MPCEP and *CEPMP

inverses.
(7) Consequently, we obtain new and known properties of the MPCEP,

*CEPMP, MPD and DMP inverses as well as of two for the first time men-
tioned generalized inverses.

(8) In order to illustrate our results, numerical examples are presented.
This is the content of our paper. Section 2 involves definitions and char-

acterizations of weak MPCEP and *CEPMP inverses. Formulae of weak MP-
CEP inverses are given in Section 3. Perturbation formulae and perturbation
bounds of weak MPCEP and *CEPMP inverses are established in Section 4.
Solvability of some linear equations is proved in Section 5 in terms of weak
MPCEP and *CEPMP inverses. As a consequence, the major application of
the Moore-Penrose inverse in solving linear equation is obtained.

2 Weak MPCEP and *CEPMP inverses

Based on a minimal rank weak Drazin inverse or minimal rank right weak
Drazin inverse instead of the core–EP inverse and *core–EP inverse, we con-
sider generalized versions of the systems (1) and (2). As solutions of new
weaker systems of matrix equations, we naturally define two new types of
generalized inverses.

Theorem 2.1. Let A ∈ Cn×n, k = ind(A), X be a minimal rank weak Drazin
inverse of A and Z be a minimal rank right weak Drazin inverse of A. Then

(a) Y = A†AX is uniquely determined solution to the system of matrix
equations

Y AY = Y, AY = AX and Y A = A†AXA. (3)
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(b) Y = ZAA† is uniquely determined solution to the system of matrix equa-
tions

Y AY = Y, Y A = ZA and AY = AZAA†.

Proof. (a) According to [21, Theorem 2.1], a minimal rank weak Drazin inverse
X of A satisfies XAX = X. If Y = A†AX, we get Y A = A†AXA, AY =
(AA†A)X = AX and

Y AY = Y AX = A†A(XAX) = A†AX = Y,

that is, (3) has a solution Y = A†AX.
A solution Y of (3) is uniquely determined because

Y = (Y A)Y = A†AX(AY ) = A†A(XAX) = A†AX.

(b) This part follows similarly by properties of a minimal rank right weak
Drazin inverse Z of A given in [14, Lemma 1.1].

Definition 2.1. Let A ∈ Cn×n, k = ind(A), X be a minimal rank weak
Drazin inverse of A and Z be a minimal rank right weak Drazin inverse of A.
Then

(a) the weak MPCEP inverse of A is introduced as

Aw,†, †© = A†AX.

(b) the weak *CEPMP inverse of A is introduced as

Aw, †©,† = ZAA†.

Classes of weak MPCEP and *CEPMP inverses contain as particular types
the next well-known generalized inverses:

- for X = AD, the weak MPCEP inverse reduces to the MPD inverse
A†AAD = A†,D [10];

- if Z = AD, the weak *CEPMP inverse is equal to the DMP inverse
ADAA† = AD,† [10];

- in the case that X = AD,† (or Z = A†,D), the weak MPCEP (or
*CEPMP) inverse coincides with the CMP inverse A†AAD,† =
A†AADAA† = Ac,† [11];

- when X = A †©, the weak MPCEP inverse becomes the MPCEP inverse
A†AA †© = A†, †© [4];
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- taking Z = A †©, the weak *CEPMP inverse is the *CEPMP inverse
A †©AA† = A †©,† [4];

- for X = Aw©, the weak MPCEP inverse is equal to A†AAw©, which rep-
resents, by Theorem 2.1, the unique solution to the system

Y AY = Y, AY = AAw© and Y A = A†AAw©A;

- if X = Aw©m , where m ∈ N, the weak MPCEP inverse of A reduces to
A†AAw©m , i.e. uniquely determined solution to

Y AY = Y, AY = AAw©m and Y A = A†AAw©mA.

Remark that A†AAw© and A†AAw©m represent new generalized inverses of
A considering here for the first time in literature.

In the following example, we observe that the weak MPCEP inverse is
different form the well-known generalized inverses and some of them are its
special cases.

Example 2.1. Considering

A =

 4 2 0
0 0 1
0 0 0

 ,

it follows ind(A) = 2,

AD =

 1
4

1
8

1
32

0 0 0
0 0 0

 , A† =

 1
5 0 0
1
10 0 0
0 1 0

 .

A †© =

 1
4 0 0
0 0 0
0 0 0

 and Aw© =

 1
4

1
8 0

0 0 0
0 0 0

 .

The minimal rank weak Drazin inverse X of A has the form

X =

 1
4 x1 x2

0 0 0
0 0 0

 .

where x1, x2 ∈ C. Thus, the weak MPCEP inverse of A is given by

Y = A†AX =

 1
5

4
5x1

4
5x2

1
10

2
5x1

2
5x2

0 0 0

 ,
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and the weak MPD inverse is

Aw,†,D = A†XA =

 1
5

1
10

1
5x1

1
10

1
20

1
10x1

0 0 0

 .

In the case that x1 = 1
8 and x2 = 1

32 , the minimal rank weak Drazin inverse X
reduces to the Drazin inverse AD and the weak MPCEP inverse Y coincides
with the MPD inverse

A†,D = A†AAD =

 1
5

1
10

1
40

1
10

1
20

1
80

0 0 0

 .

When x1 = x2 = 0, the minimal rank weak Drazin inverse X becomes the
core–EP inverse A †© and the weak MPCEP inverse Y is equal to the MPCEP
inverse

A†, †© = A†AA †© =

 1
5 0 0
1
10 0 0
0 0 0

 .

If x1 = 1
8 and x2 = 0, X is equal to the weak group inverse Aw© and the weak

MPCEP inverse Y is

A†AAw© =

 1
5

1
10 0

1
10

1
20 0

0 0 0

 .

The weak MPCEP inverse can be also considered as solution of the follow-
ing systems of matrix equations.

Theorem 2.2. Let A ∈ Cn×n, k = ind(A) and X be a minimal rank weak
Drazin inverse of A. The next statements are equivalent for Y ∈ Cn×n:

(i) Y = A†AX;

(ii) Y AY = Y , AY A = AXA, AY = AX and Y A = A†AXA;

(iii) Y AY = Y , AY = AX and Y Ak = A†Ak;

(iv) Y = A†AXAY and AY = AX;

(v) Y = A†AXAY and A†AY = A†AX;

(vi) Y = A†AXAY and A∗AY = A∗AX;

(vii) Y = A†AXAY and XAY = X;
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(viii) Y = Y AX and Y A = A†AXA;

(ix) Y = Y AX and Y AA† = A†AXAA†;

(x) Y = Y AX and Y AA∗ = A†AXAA∗;

(xi) Y = Y AX and Y AX = A†AX;

(xii) Y = Y AX and Y Ak = A†Ak;

(xiii) Y = Y AX and Y AAD = A†,D;

(xiv) Y = A†AY and AY = AX;

(xv) Y = A†AY and A†AY = A†AX;

(xvi) Y = A†AY and A∗AY = A∗AX;

(xvii) Y AXAY = Y , AXAY AXA = AXA, AXAY = AX and Y AXA =
A†AXA;

(xviii) Y AXAY = Y , AXAY = AX and Y AXA = A†AXA.

Proof. (i) ⇔ (ii): Theorem 2.1 implies this equivalence.
(i) ⇒ (iii): Recall that, by [21, Theorem 2.1], XAk+1 = Ak. For Y =

A†AX, we get

Y Ak = A†A(XAk+1)AD = A†(Ak+1AD) = A†Ak.

(iii) ⇒ (i): Applying [21, Theorem 2.1], we have X = AX2 = A2X3 =
· · · = AkXk+1. The assumptions Y AY = Y , AY = AX and Y Ak = A†Ak

yield

Y = Y (AY ) = Y AX = (Y Ak)AXk+1 = A†A(AkXk+1) = A†AX.

(ii) ⇒ (iv): One can observe that Y AY = Y and Y A = A†AXA give
Y = (Y A)Y = A†AXAY .

(iv) ⇒ (v): It is evident.
(v) ⇒ (vi): From A†AY = A†AX, we obtain A∗AY = A∗A(A†AY ) =

(A∗AA†)AX = A∗AX.
(vi) ⇒ (vii): The hypothesis A∗AY = A∗AX implies

XAY = XAA†AY = X(A†)∗(A∗AY ) = X(A†)∗A∗AX = XAX = X.

(vii) ⇒ (i): Using Y = A†AXAY and XAY = X, we have that Y =
A†A(XAY ) = A†AX.

This proof can be finished in an analogy manner.
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In the particular case that X = AD, Theorem 2.2 implies characterizations
of the MPD inverse and recovers [17, Corollary 3.1]. When X = A †© in
Theorem 2.2, we characterize the MPCEP inverse and get [17, Corollary 3.3].

If X = Aw©m in Theorem 2.2, a list of equivalent conditions for Y =
A†AAw©m can be obtained.

Corollary 2.1. Let A ∈ Cn×n, k = ind(A) and m ∈ N. The following
statements are equivalent for Y ∈ Cn×n:

(i) Y = A†AAw©m ;

(ii) Y AY = Y , AY A = AAw©mA, AY = AAw©m and Y A = A†AAw©mA;

(iii) Y AY = Y , AY = AAw©m and Y Ak = A†Ak;

(iv) Y = A†AAw©mAY and AY = AAw©m ;

(v) Y = A†AAw©mAY and A†AY = A†AAw©m ;

(vi) Y = A†AAw©mAY and A∗AY = A∗AAw©m ;

(vii) Y = A†AAw©mAY and Aw©mAY = Aw©m ;

(viii) Y = Y AAw©m and Y A = A†AAw©mA;

(ix) Y = Y AAw©m and Y AA† = A†AAw©mAA†;

(x) Y = Y AAw©m and Y AA∗ = A†AAw©mAA∗;

(xi) Y = Y AAw©m and Y AAw©m = A†AAw©m ;

(xii) Y = Y AAw©m and Y Ak = A†Ak;

(xiii) Y = Y AAw©m and Y AAD = A†,D;

(xiv) Y = A†AY and AY = AAw©m ;

(xv) Y = A†AY and A†AY = A†AAw©m ;

(xvi) Y = A†AY and A∗AY = A∗AAw©m ;

(xvii) Y AAw©mAY = Y , AAw©mAY AAw©mA = AAw©mA, AAw©mAY = AAw©m

and Y AAw©mA = A†AAw©mA;

(xviii) Y AAw©mAY = Y , AAw©mAY = AAw©m and Y AAw©mA = A†AAw©mA.
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Notice that AAw©m in Corollary 2.1 can be replaced with (A †©)mAm to
obtain more characterizations of Y = A†AAw©m . For m = 1 in Corollary 2.1,
characterizations of Y = A†AAw©m can be given.

Necessary and sufficient conditions for a given matrix to be the weak
*CEPMP inverse can be established as Theorem 2.2.

Theorem 2.3. Let A ∈ Cn×n, k = ind(A) and Z be a minimal rank right weak
Drazin inverse of A. The following statements are equivalent for Y ∈ Cn×n:

(i) Y = ZAA†;

(ii) Y AY = Y , AY A = AZA, Y A = ZA and AY = AZAA†;

(iii) Y AY = Y , Y A = ZA and AkY = AkA†;

(iv) Y = Y AZAA† and Y A = ZA;

(v) Y = Y AZAA† and Y AA† = ZAA†;

(vi) Y = Y AZAA† and Y AA∗ = ZAA∗;

(vii) Y = Y AZAA† and Y AZ = Z;

(viii) Y = ZAY and AY = AZAA†;

(ix) Y = ZAY and A†AY = A†AZAA†;

(x) Y = ZAY and A∗AY = A∗AZAA†;

(xi) Y = ZAY and ZAY = ZAA†;

(xii) Y = ZAY and AkY = AkA†;

(xiii) Y = ZAY and ADAY = AD,†;

(xiv) Y = Y AA† and Y A = ZA;

(xv) Y = Y AA† and Y AA† = ZAA†;

(xvi) Y = Y AA† and Y AA∗ = ZAA∗;

(xvii) Y AZAY = Y , AZAY AZA = AZA, Y AZA = ZA and AZAY =
AZAA†;

(xviii) Y AZAY = Y , Y AZA = ZA and AZAY = AZAA†.
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Especially, for Z = AD and Z = A †© in Theorem 2.3, we can verify char-
acterizations of the DMP inverse and the *CEPMP inverse proposed in [17,
Corollary 2.1 and Corollary 2.3].

Theorem 2.1 gives that weak MPCEP and *CEPMP inverses are outer
inverses of A, and, by Theorem 2.2 and Theorem 2.3, they are both outer and
inner inverses of AXA and AZA, respectively. We consider ranges and null
spaces of weak MPCEP and *CEPMP inverses and of projections defining by
them. For subspaces G and H, PG,H marks the projector onto G along H;
and PG is the orthogonal projector onto G.

Lemma 2.1. Let A ∈ Cn×n, k = ind(A), X be a minimal rank weak Drazin
inverse of A and Z be a minimal rank right weak Drazin inverse of A.

(a) For Y = A†AX, we have

(i) AY = PR(Ak),N(X);

(ii) Y A = PR(A†Ak),N(XA);

(iii) Y = A
(2)

R(A†Ak),N(X)
= (AXA)

(1,2)

R(A†Ak),N(X)
.

(b) For Y = ZAA†, we have

(i) AY = PR(AZ),N(AkA†);

(ii) Y A = PR(Z),N(Ak);

(iii) Y = A
(2)

R(Z),N(AkA†)
= (AZA)

(1,2)

R(Z),N(AkA†)
.

Proof. (a) (i) Theorem 2.1 gives AY = AX. Because R(X) = R(Ak), it
follows R(AY ) = R(AX) = R(Ak+1) = R(Ak) and, by XAX = X, N(AY ) =
N(AX) = N(X).

(ii) Since Y A = A†AXA, XAX = X and R(X) = R(Ak), we obtain

R(Y A) = R(A†AXA) = R(A†AX) = R(A†AAk) = R(A†Ak).

We conclude that N(Y A) = N(A†AXA) = N(AXA) = N(XA).
(iii) By parts (ii) and (iii), note that N(Y ) = N(AY ) = N(X) and R(Y ) =

R(Y A) = R(A†Ak). Theorem 2.2 implies that Y is both inner and outer
inverse of AXA.

Similarly, we verify part (b).

Using Urquhart formula [2, Theorem 13] and Lemma 2.1, we can get new
formulae of weak MPCEP and *CEPMP inverses.
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Corollary 2.2. Let A ∈ Cn×n, k = ind(A), X be a minimal rank weak Drazin
inverse of A and Z be a minimal rank right weak Drazin inverse of A. Then

A†AX = A†Ak(XAk)†X

and
ZAA† = Z(AkZ)†AkA†.

We develop new and recover well-known expressions for particular types of
weak MPCEP and *CEPMP inverses applying Lemma 2.1 and Corollary 2.2.

Corollary 2.3. If A ∈ Cn×n and k = ind(A), we have

(i) A†,D = (AADA)
(1,2)

R(A†Ak),N(Ak)
= A†Ak(ADAk)†AD;

(ii) A†, †© = (AA †©A)
(1,2)

R(A†Ak),N((Ak)∗)
= A†Ak(A †©Ak)†A †©

= A†Ak(ADAk)†A †©;

(iii) A†AA †©m = A
(2)

R(A†Ak),N((Ak)∗Am)
= (AA †©mA)

(1,2)

R(A†Ak),N((Ak)∗Am)

= A†Ak(A †©mAk)†A †©m = A†Ak(ADAk+m)†A †©m , where m ∈ N;

(iv) AD,† = (AADA)
(1,2)

R(Ak),N(AkA†)
= AD(AkAD)†AkA†;

(v) A †©,† = (AA †©A)
(1,2)

R((Ak)∗),N(AkA†)
= A †©(AkA †©)†AkA†

= A †©(AkAD)†AkA†.

Several equivalent conditions for MPCEP and *CEPMP inverses of A to
be in the set A{1}, are investigated. Also, one can see that the weak MPCEP
inverse A†AX and weak MPD inverse A†XA coincide if and only if X is equal
to AD.

Theorem 2.4. Let A ∈ Cn×n, k = ind(A), X be a minimal rank weak Drazin
inverse of A and Z be a minimal rank right weak Drazin inverse of A. Then

(i) A†AX ∈ A{1} if and only if X ∈ A{1} if and only if N(A) = N(XA) if
and only if R(A) = R(Ak) if and only if k ≤ 1;

(ii) ZAA† ∈ A{1} if and only if Z ∈ A{1} if and only if R(A) = R(AZ) if
and only if N(A) = N(Ak) if and only if k ≤ 1;

(iii) A†AX = A†XA if and only if AX = XA if and only if X = AD.
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Proof. (i) The first equivalence is clear by AA†AXA = AXA. Further, by
R(X) = R(Ak),

A = AXA ⇔ A(I −XA) = 0⇔ R(I −XA) ⊆ N(A)

⇔ N(XA) ⊆ N(A)⇔ N(XA) = N(A)

⇔ (I −AX)A = 0⇔ R(A) ⊆ N(I −AX)

⇔ R(A) ⊆ R(AX)⇔ R(A) = R(AX)

⇔ R(A) = R(Ak).

Part (ii) can be checked similarly.
(iii) It is clear, by A†AX = A†XA and X = AX2, that

AX = A(A†AX) = AA†XA = (AA†A)X2A = (AX2)A = XA.

The converse is obvious.

Weak MPD and DMP inverses can be presented as solutions of the next
equations with constrain.

Theorem 2.5. Let A ∈ Cn×n, k = ind(A), X be a minimal rank weak Drazin
inverse of A and Z be a minimal rank right weak Drazin inverse of A. Then

(i) Y = A†AX is uniquely determined solution to

AY = PR(Ak),N(X) and R(Y ) ⊆ R(A∗); (4)

(ii) Y = A†AX is uniquely determined solution to

Y A = PR(A†Ak),N(XA) and R(Y ∗) ⊆ R(X∗); (5)

(iii) Y = ZAA† is uniquely determined solution to

AY = PR(AZ),N(AkA†) and R(Y ) ⊆ R(AZ);

(iv) Y = ZAA† is uniquely determined solution to

Y A = PR(Z),N(Ak) and R(Y ∗) ⊆ R(A).

Proof. (i) We deduce, using Lemma 2.1, that Y = A†AX is a solution to (4).
If (4) has two solutions Y and U , then A(Y−U) = 0 and R(Y−U) ⊆ R(A∗).

So, R(Y −U) ⊆ N(A)∩R(A∗) = {0}, that is, Y = A†AX is the unique solution
to (4).
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(ii) Notice that Y ∗ = X∗A†A and Lemma 2.1 imply that (5) has a solution
Y = A†AX.

For Y and U as two solutions of (5), it follows A∗(Y ∗ − U∗) = 0 and
R(Y ∗ −U∗) ⊆ R(X∗) = R(X∗A∗). Thus, R(Y ∗ −U∗) ⊆ N(A∗)∩R(X∗A∗) ⊆
N(X∗A∗) ∩ R(X∗A∗) = {0}, i.e. (5) has the unique solution Y = A†AX.

The rest can be proved analogously.

New characterizations of Y = A†AX are presented in the next result.

Theorem 2.6. Let A ∈ Cn×n, k = ind(A) and X be a minimal rank weak
Drazin inverse of A. The next statements are equivalent for Y ∈ Cn×n:

(i) Y = A†AX;

(ii) R(Y ) = R(A†Ak) and AY = AX;

(iii) R(Y ) ⊆ R(A†Ak) and AY = AX;

(iv) R(Y ∗) = R(X∗) and Y A = A†AXA;

(v) R(Y ∗) ⊆ R(X∗) and Y A = A†AXA.

Proof. (i) ⇒ (ii): Lemma 2.1 and Theorem 2.2 yield this part.
(ii) ⇒ (iii): Clearly.
(iii) ⇒ (i): The hypothesis R(Y ) ⊆ R(A†Ak) gives Y = A†AkH, for

some H ∈ Cn×n. Using AY = AX, we observe that Y = A†A(A†AkH) =
A†(AY ) = A†AX.

In a similar manner, the proof can be completed.

Theorem 2.6 can imply characterizations of special kinds of weak MPCEP
inverses and we give consequences related to the MPCEP inverse and Y =
A†AAw©m .

Corollary 2.4. Let A ∈ Cn×n with k = ind(A). The next statements are
equivalent for Y ∈ Cn×n:

(i) Y = A†AA †©(= A†, †©);

(ii) R(Y ) = R(A†Ak) and AY = AA †©;

(iii) R(Y ) ⊆ R(A†Ak) and AY = AA †©;

(iv) R(Y ∗) = R(Ak) and Y A = A†AA †©A;

(v) R(Y ∗) ⊆ R(Ak) and Y A = A†AA †©A.

Corollary 2.5. Let A ∈ Cn×n, k = ind(A) and m ∈ N. The next statements
are equivalent for Y ∈ Cn×n:
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(i) Y = A†AAw©m ;

(ii) R(Y ) = R(A†Ak) and AY = AAw©m ;

(iii) R(Y ) ⊆ R(A†Ak) and AY = AAw©m ;

(iv) R(Y ∗) = R((Am)∗Ak) and Y A = A†AAw©mA;

(v) R(Y ∗) ⊆ R((Am)∗Ak) and Y A = A†AAw©mA.

We establish the following characterizations of Y = ZAA† as Theorem 2.6.

Theorem 2.7. Let A ∈ Cn×n, k = ind(A) and Z be a minimal rank right
weak Drazin inverse of A. The next statements are equivalent for Y ∈ Cn×n:

(i) Y = ZAA†;

(ii) R(Y ) = R(Z) and AY = AZAA†;

(iii) R(Y ) ⊆ R(Z) and AY = AZAA†;

(iv) R(Y ∗) = R(A) and Y A = ZA;

(v) R(Y ∗) ⊆ R(A) and Y A = ZA.

Theorem 2.7 can give characterizations of the DMP and *CEPMP inverses.

3 Formulae for weak MPCEP inverse

This section contains significant formulae of weak MPCEP inverse.
Firstly, we express the weak MPCEP and *CEPMP inverses using MPD

and DMP inverses.

Lemma 3.1. Let A ∈ Cn×n, k = ind(A), X be a minimal rank weak Drazin
inverse of A and Z be a minimal rank right weak Drazin inverse of A. Then

A†AX = A†,DAX

and
ZAA† = ZAAD,†.

Proof. For some U ∈ Cn×n, recall that R(X) = R(AD) gives X = ADAU =
ADAX. Now, A†AX = (A†AAD)AX = A†,DAX. The second formula follows
in a same manner.

The canonical forms of the minimal rank weak Drazin inverse and Moore-
Penrose inverse were given in [21] and [5], respectively, for a square matrix
decomposed as in [19].
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Lemma 3.2. [19] If A ∈ Cn×n, ind(A) = k and rank(Ak) = t, then

A = U

[
A1 A2

0 A3

]
U∗, (6)

where U ∈ Cn×n is unitary, A1 ∈ Ct×t is invertible upper-triangular and
A3 ∈ C(n−t)×(n−t) is a nilpotent of index k. In addition, a minimal rank weak
Drazin inverse X of A is represented by [21]:

X = U

[
A−11 V

0 0

]
U∗, (7)

where V ∈ Ct×(n−t). Furthermore, the Moore-Penrose inverse of A is given
as [5]:

A† = U

[
A∗14 −A∗14A2A

†
3

(I −A†3A3)A∗24 A†3 − (I −A†3A3)A∗24A2A
†
3

]
U∗, (8)

where 4 = (A1A
∗
1 + A2(I −A†3A3)A∗2)−1.

We now propose the canonical form for the weak MPCEP inverse.

Lemma 3.3. If A ∈ Cn×n with k = ind(A) is given by (6) and X is a minimal
rank weak Drazin inverse of A represented by (7), then

Y = A†AX = U

[
A∗14 A∗14A1V

(I −A†3A3)A∗24 (I −A†3A3)A∗24A1V

]
U∗, (9)

where 4 = (A1A
∗
1 + A2(I −A†3A3)A∗2)−1.

Proof. The equalities (6), (7) and (8) yield

Y = A†AX

= U

[
A∗14A1 A∗14A2(I −A†3A3)

(I −A†3A3)A∗24A1 A†3A3 + (I −A†3A3)A∗24A2(I −A†3A3)

]
U∗

× X

= U

[
A∗14 A∗14A1V

(I −A†3A3)A∗24 (I −A†3A3)A∗24A1V

]
U∗.

Based on projections F = I − AY and G = I − Y A, the next expressions
of the weak MPCEP inverse Y can be established.
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Theorem 3.1. Let A ∈ Cn×n, k = ind(A) and X be a minimal rank weak
Drazin inverse of A. For Y = A†AX, F = I − AY and G = I − Y A, A± F
are nonsingular and

Y = (I −G)(A± F )−1(I − F ). (10)

Proof. Assume that A and Y , respectively, are represented as in (6) and (9).
Then

F = I −AY = I − U

[
I A1V
0 0

]
U∗

= U

[
0 −A1V
0 I

]
U∗

and

I −G = Y A

= U

[
A∗14A1 A∗14(A2 + A1V A3)

(I −A†3A3)A∗24A1 (I −A†3A3)A∗24(A2 + A1V A3)

]
U∗.

Since A1 and A3 ± I are nonsingular, we deduce that

A± F = U

[
A1 A2 ∓A1V
0 A3 ± I

]
U∗

is nonsingular too and

(A± F )−1 = U

[
A−11 −A−11 (A2 ∓A1V )(A3 ± I)−1

0 (A3 ± I)−1

]
U∗.

Now, (10) is satisfied by

(I −G)(A± F )−1(I − F ) =

= (I −G)U

[
A−11 V

0 0

]
U∗

= U

[
A∗14 A∗14A1V

(I −A†3A3)A∗24 (I −A†3A3)A∗24A1V

]
U∗

= Y.

The following example is given to illustrate Theorem 3.1.
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Example 3.1. For the matrix A as in Example 2.1, we have

I − F = AY =

 1 4x1 4x2

0 0 0
0 0 0

 , F = I −AY =

 0 −4x1 −4x2

0 1 0
0 0 1


and

I −G = Y A =

 4
5

2
5

4
5x1

2
5

1
5

2
5x1

0 0 0

 .

Further

A + F =

 4 2− 4x1 −4x2

0 1 1
0 0 1

 A− F =

 4 2 + 4x1 4x2

0 −1 1
0 0 −1

 ,

(A + F )−1 =

 1
4 − 1

2 + x1
1
2 − x1 + x2

0 1 −1
0 0 1


and

(A− F )−1 =

 1
4

1
2 + x1

1
2 + x1 + x2

0 −1 −1
0 0 −1

 .

Using elementary calculations, we get (I −G)(A± F )−1(I − F ) = Y .

The set of all weak MPCEP inverses of A can be described in the next
manners.

Theorem 3.2. Let A ∈ Cn×n, k = ind(A) and X be a minimal rank weak
Drazin inverse of A. The set of all weak MPCEP inverses of A is expressed
as:

(i) {A†,D + A†,DAE(I −ADA) : E ∈ Cn×n};

(ii) {A†AX + A†AXF (I −XA) : F ∈ Cn×n};

(iii) {A†AX + A†AXF (I −AX) : F ∈ Cn×n}.

Proof. (i) The set of all minimal rank weak Drazin inverses of A is given in [3,
Theorem 2] as {AD +ADAE(I −ADA) : E ∈ Cn×n}. Using the definition of
weak MPCEP inverse, we compete this part.

(ii) ∧ (iii) The set of all minimal rank weak Drazin inverses of A is presented
in [21, Theorem 2.8] as {X+XF (I−XA) : F ∈ Cn×n} or {X+XF (I−AX) :
F ∈ Cn×n}.
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4 Perturbation results of weak MPCEP and *CEPMP
inverses

One significant part of the theory of generalized inverses is perturbation theory.
Perturbation results for the Moore-Penrose inverse are given in [2] and for the
minimal rank weak Drazin inverse in [14].

Perturbation expressions and perturbation bounds of weak MPCEP inverse
are firstly investigated in this section.

Theorem 4.1. Let A ∈ Cn×n, k = ind(A), X be a minimal rank weak Drazin
inverse of A, Y = A†AX and B = A + E ∈ Cn×n. If R(E) ⊆ R(Ak),
R(E∗) ⊆ R((XA)∗) and max{‖EX‖, ‖A†E‖} < 1, then

(I + Y E)−1Y = B†B(I + XE)−1X

and
Y (I + EY )−1 = B†BX(I + EX)−1,

where X(I +EX)−1 is a minimal rank weak Drazin inverse of B. In addition,

B(I + XE)−1X = B(B†B(I + XE)−1X) = AY,

B†BX(I + EX)−1B = Y A,

‖Y ‖
1 + ‖Y E‖

≤ ‖B†B(I + XE)−1X‖ ≤ ‖Y ‖
1− ‖Y E‖

and
‖Y ‖

1 + ‖EY ‖
≤ ‖B†BX(I + EX)−1‖ ≤ ‖Y ‖

1− ‖EY ‖
.

Proof. By [2], R(E) ⊆ R(Ak) ⊆ R(A) and R(E∗) ⊆ R((XA)∗) ⊆ R(A∗) imply

B† = (I + A†E)−1A† = A†(I + EA†)−1,

BB† = AA†, B†B = A†A.

Because R(E) ⊆ R(Ak) = R(X), we deduce that E = XU = AX2U = AXE.
From R(E∗) ⊆ R(A∗), E = EA†A. The assumption ‖A†E‖ < 1 gives that
I +Y E = I +A†AXE = I +A†E is nonsingular. Using ‖EX‖ < 1, I +EY =
I + EA†AX = I + EX is nonsingular. According to [14, Theorem 4.1],

(I + Y E)−1Y = (I + A†E)−1A†(AX)

= B†B(I + XE)−1X
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and

Y (I + EY )−1 = A†AX(I + EX)−1 = B†BX(I + EX)−1.

Since B = A+E = A+AXE = A+AA†AXE = A(I+Y E), we conclude that
B(I + XE)−1X = B(B†B(I + XE)−1X) = A(I + Y E)(I + Y E)−1Y = AY .
Notice that R(E∗) ⊆ R((XA)∗) yields E = HXA = (HXA)XA = EXA, for
some H ∈ Cn×n. Therefore, B = (I + EX)A = (I + EY )A and (B†BX(I +
EX)−1)B = Y (I + EY )−1(I + EY )A = Y A.

By Theorem 4.1, we can get as a special case perturbation formulae for the
MPD inverse given in [14, Corollary 4.1(i)].

For X = A †© in Theorem 4.1, perturbation results for the MPCEP inverse
can be established.

Corollary 4.1. Let A ∈ Cn×n, k = ind(A) and B = A + E ∈ Cn×n. If
R(E) ⊆ R(Ak), R(E∗) ⊆ R(A∗Ak) and max{‖EA †©‖, ‖A†E‖} < 1, then

B†, †© = (I + A†, †©E)−1A†, †© = A†, †©(I + EA†, †©)−1,

BB†, †© = AA†, †©, B†, †©B = A†, †©A and

‖A†, †©‖
1 + ‖A†, †©E‖

≤ ‖B†, †©‖ ≤ ‖A†, †©‖
1− ‖A†, †©E‖

.

Proof. According to [13, Corollary 3.1] and AA †©E = Ak(Ak)†E = E, B †© =
(I + A †©E)−1A †© = A †©(I + EA †©)−1. The rest follows by Theorem 4.1.

Perturbation expressions of the weak *CEPMP inverse can be proved in
an analogy manner.

Theorem 4.2. Let A ∈ Cn×n, k = ind(A), Z be a minimal rank right weak
Drazin inverse of A, Y = ZAA† and B = A + E ∈ Cn×n. If R(E) ⊆ R(AZ),
R(E∗) ⊆ R((Ak)∗) and max{‖ZE‖, ‖EA†‖} < 1, then

(I + Y E)−1Y = (I + ZE)−1ZBB†

and
Y (I + EY )−1 = Z(I + EZ)−1BB†,

where (I + ZE)−1Z is a minimal rank right weak Drazin inverse of B. In
addition,

B(I + ZE)−1ZBB† = AY,

Z(I + EZ)−1B = (Z(I + EZ)−1BB†)B = Y A,
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‖Y ‖
1 + ‖Y E‖

≤ ‖(I + ZE)−1ZBB†‖ ≤ ‖Y ‖
1− ‖Y E‖

and
‖Y ‖

1 + ‖EY ‖
≤ ‖Z(I + EZ)−1BB†‖ ≤ ‖Y ‖

1− ‖EY ‖
.

When Z = A †© in Theorem 4.2, we obtain the next perturbation results
for the *CEPMP inverse.

Corollary 4.2. Let A ∈ Cn×n, k = ind(A) and B = A + E ∈ Cn×n. If
R(E) ⊆ R(A(Ak)∗), R(E∗) ⊆ R((Ak)∗) and max{‖A †©E‖, ‖EA†‖} < 1, then

B †©,† = (I + A †©,†E)−1A †©,† = A †©,†(I + EA †©,†)
−1,

BB †©,† = AA †©,†, B †©,†B = A †©,†A and

‖A †©,†‖
1 + ‖A †©,†E‖

≤ ‖B †©,†‖ ≤
‖A †©,†‖

1− ‖A †©,†E‖
.

5 Applications of weak MPCEP and *CEPMP inverses

Solvability of certain linear equations can be obtained applying weak MPCEP
and *CEPMP inverses.

Theorem 5.1. Let B ∈ Cn×q, A ∈ Cn×n, k = ind(A) and X be a minimal
rank weak Drazin inverse of A. For Y = A†AX, the equation (with unknown
U)

XAU = XB (11)

has the general solution in the next form

U = Y B + (I − Y A)V, (12)

for arbitrary V ∈ Cn×q.

Proof. Theorem 2.2 implies that XAY = X. If U has the form (12), we get

XAU = XAY B + XA(I − Y A)V = XB,

that is, (11) holds.
When the equation (11) has a solution U , then

Y AU = A†A(XAU) = A†AXB = Y B.

Hence, U = Y B + U − Y AU = Y B + (I − Y A)U has the form as in (12).
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Consequently, Theorem 5.1 gives the next result.

Corollary 5.1. If B ∈ Cn×q, A ∈ Cn×n and k = ind(A), the equation

(i) ADAU = ADB has the general solution U = A†,DB + (I −A†,DA)V ;

(ii) A †©AU = A †©B has the general solution U = A†, †©B + (I −A†, †©A)V ;

(iii) Aw©mAU = Aw©mB, where m ∈ N, has the general solution U = A†AAw©mB
+ (I −A†AAw©mA)V.

for arbitrary V ∈ Cn×q.

As Theorem 5.1, we can verify solvability of the next equations.

Theorem 5.2. Let B ∈ Cn×q, A ∈ Cn×n, k = ind(A) and X be a minimal
rank weak Drazin inverse of A. For Y = A†AX, the equation

AU = AXB

has the general solution in the next form

U = Y B + (I −A†A)V,

for arbitrary V ∈ Cn×q.

If we add the condition R(B) ⊆ R(Ak) in Theorem 5.2, we obtain the main
well-known role of the Moore-Penrose inverse in solving linear equations [12].

Corollary 5.2. Let B ∈ Cn×q, A ∈ Cn×n, k = ind(A) and X be a minimal
rank weak Drazin inverse of A. For Y = A†AX, the equation

AU = B, R(B) ⊆ R(Ak),

has the general solution in the next form

U = A†B + (I −A†A)V,

for arbitrary V ∈ Cn×q.

Proof. Since R(B) ⊆ R(Ak) = R(X) and X = AX2, we conclude that B =
XH = AX(XH) = AXB, for some H ∈ Cn×q. The rest is clear by Theorem
5.2.

Theorem 5.3. Let B ∈ Cq×n, A ∈ Cn×n, k = ind(A) and X be a minimal
rank weak Drazin inverse of A. For Y = A†AX, the equation

UAk = BA†Ak



WEAK MPCEP AND *CEPMP INVERSES 89

has the general solution in the next form

U = BY + V (I −AX),

for arbitrary V ∈ Cq×n.

Remark that the equation UAk = BA†Ak is equivalent to UAD = BA†AD

and so these equalities have the solution in the same form.
Analogously, we solve several linear equations using weak *CEPMP inverse.

Theorem 5.4. Let B ∈ Cq×n, A ∈ Cn×n, k = ind(A) and Z be a minimal
rank right weak Drazin inverse of A. For Y = ZAA†, the equation

UAZ = BZ

has the general solution in the next form

U = BY + V (I −AY ),

for arbitrary V ∈ Cq×n.

Corollary 5.3. If B ∈ Cq×n, A ∈ Cn×n and k = ind(A), the equation

(i) UADA = BAD has the general solution U = BAD,† + V (I −AAD,†);

(ii) UAA †© = BA †© has the general solution U = BA †©,† + V (I −AA †©,†).

for arbitrary V ∈ Cq×n.

Theorem 5.5. Let B ∈ Cq×n, A ∈ Cn×n, k = ind(A) and Z be a minimal
rank right weak Drazin inverse of A. For Y = ZAA†, the equation

UA = BZA

has the general solution in the next form

U = BY + V (I −AA†),

for arbitrary V ∈ Cq×n.

Corollary 5.4. Let B ∈ Cq×n, A ∈ Cn×n, k = ind(A) and Z be a minimal
rank right weak Drazin inverse of A. For Y = ZAA†, the equation

UA = B, N(Ak) ⊆ N(B),

has the general solution in the next form

U = BA† + V (I −AA†),

for arbitrary V ∈ Cq×n.
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Theorem 5.6. Let B ∈ Cn×q, A ∈ Cn×n, k = ind(A) and Z be a minimal
rank right weak Drazin inverse of A. For Y = ZAA†, the equation

AkU = AkA†B

has the general solution in the next form

U = Y B + (I − ZA)V,

for arbitrary V ∈ Cn×q.

Theorem 5.1 can be confirmed in the following example.

Example 5.1. Let A be the matrix as in Example 2.1,

B =

 10 20
0 0
0 0

 and V =

 v1 v2
v3 v4
v5 v6

 .

Since

U = Y B + (I − Y A)V

=

 2 + 1
5v1 −

2
5v3 −

4
5x1v5 4 + 1

5v2 −
2
5v4 −

4
5x1v6

1− 2
5v1 + 4

5v3 −
2
5x1v5 2− 2

5v2 + 4
5v4 −

2
5x1v6

v5 v6

 ,

we verify that

XAU =

 5
2 5
0 0
0 0

 = XB,

i.e. Theorem 5.1 is confirmed.
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[4] J.L. Chen, D. Mosić, S.Z. Xu, On a new generalized inverse for Hilbert
space operators, Quaest. Math. 43 (2020), 1331–1348.

[5] C.Y. Deng, H.K. Du, Representations of the Moore-Penrose inverse of
2× 2 block operator valued matrices, J. Korean Math. Soc. 46(6) (2009),
1139–1150.

[6] Y. Gao, J. Chen, Pseudo core inverses in rings with involution, Commun.
Algebra 61 (2018), 886-891.
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